LATTICES OF LIPSCHITZ FUNCTIONS

Nik Weaver

Abstract

Let M be a metric space. We observe that $\operatorname{Lip}(M)$ has a striking lattice structure: its closed unit ball is lattice-complete and completely distributive. This motivates further study into the lattice structure of $\operatorname{Lip}(M)$ and its relation to M. We find that there is a nice duality between M and $\operatorname{Lip}(M)$ (as a lattice). We also give an abstract classification of all normed vector lattices which are isomorphic to $\operatorname{Lip}(M)$ for some M.

The set $\operatorname{Lip}(M)$ of bounded real-valued Lipschitz functions on a metric space M has been studied extensively (see [2] for some references) as either a Banach space or a Banach algebra. However, its natural lattice structure has been almost completely ignored, probably because it is not a Banach lattice: the "Riesz norm" law

$$
|x| \leq|y| \Rightarrow\|x\| \leq\|y\|,
$$

which connects lattice structure with norm, is not satisfied by either of the two norms customarily given to $\operatorname{Lip}(M)$. (Here $|x|=x \vee(-x)$.)

Nonetheless, the lattice structure of $\operatorname{Lip}(M)$ is intimately related to its most natural norm. Indeed, for any norm-bounded set of elements $\left\{x_{\alpha}\right\} \subset \operatorname{Lip}(M)$, the join $\bigvee x_{\alpha}$ exists and satisfies

$$
\begin{equation*}
\left\|\bigvee x_{\alpha}\right\| \leq \sup \left\{\left\|x_{\alpha}\right\|\right\} . \tag{*}
\end{equation*}
$$

Since $-\bigvee x_{\alpha}=\Lambda\left(-x_{\alpha}\right)$ (whenever either side exists), this implies a similar statement for meets and is equivalent to saying that the closed unit ball of $\operatorname{Lip}(M)$ is lattice-complete. What's more, the unit ball is completely distributive, which makes it very special from the latticetheoretic point of view. We therefore feel that a study of $\operatorname{Lip}(M)$ which emphasizes its lattice structure is well warranted.

This paper begins such a study. Having identified the special lattice properties of $\operatorname{Lip}(M)$, we also find it interesting to examine the class of all normed vector lattices which share these properties. We will call these objects Lip-spaces. (Note: by "normed vector lattice" we simply mean a vector lattice which is equipped with a vector space norm. This is at variance with a usage of this term which requires that the norm be a Riesz norm.)

