UNIT INDICES OF SOME IMAGINARY COMPOSITE QUADRATIC FIELDS

Mikihito Hirabayashi

Abstract

Let K be an imaginary abelian number field of type (2,2,2,2) not containing the 8th cyclotomic field. Using the fundamental units of real quadratic subfields of K, we give a necessary and sufficient condition for the unit index Q_{K} of K to be equal to 2 .

1. Introduction and results. Let K be an imaginary abelian number field and K_{0} the maximal real subfield of K. Let E and E_{0} be the groups of units of K and K_{0}, respectively, and let W be the group of roots of unity in K. Then we call the group index

$$
Q_{K}=\left[E: W E_{0}\right]
$$

the unit index of K.
Using the character group of K, H. Hasse [2] gave sufficient conditions for Q_{K} to be equal to 1 or 2 , by which we can determine Q_{K} for some types of fields K. However by his method we cannot always determine Q_{K} for arbitrary K, even if K is an imaginary composite quadratic field. (We call a field K a composite quadratic field if K is a composite of quadratic fields.) K . Yoshino and the author [3, 4] gave criteria to determine Q_{K} of K with Galois group $\operatorname{Gal}(K / \mathbf{Q})$ of type $(2,2)$ and $(2,2,2)$.

In this paper we extend our previous results $[3,4]$ to the case that K has Galois group $\operatorname{Gal}(K / \mathbf{Q})$ of type $(2,2,2,2)$ and does not contain the 8th cyclotomic field, and then, we give a necessary and sufficient condition for the unit index Q_{K} to be equal to 2 .

Notation. $\mathbf{N}, \mathbf{Z}, \mathbf{Q}$: the sets of natural numbers, rational integers and rational numbers, respectively,
$=$: the equality except rational quadratic factors,
$d_{0}, d_{1}, d_{2}, \ldots, d_{7}$: square-free positive integers such that $d_{4} \overline{\overline{2}}$ $d_{2} d_{3}, d_{5} \underset{2}{=} d_{3} d_{1}, d_{6} \underset{2}{=} d_{1} d_{2}, d_{7} \underset{2}{=} d_{1} d_{2} d_{3}$ and $d_{0} \neq d_{i}(i=$ $1,2, \ldots, 7)$,
$K=\mathbf{Q}\left(\sqrt{-d_{0}}, \sqrt{d_{1}}, \sqrt{d_{2}}, \sqrt{d_{3}}\right)$: an imaginary composite quadratic field of degree 16 ,

