THE INDEX OF TRANSVERSALLY ELLIPTIC OPERATORS FOR LOCALLY FREE ACTIONS

Jeffrey Fox and Peter Haskell

Abstract

Let a connected unimodular Lie group G act smoothly and locally freely on a closed manifold X. Assume that the isotropy groups of the action are torsion-free. Let K be the maximal compact subgroup of G. Let T be a G-invariant first order differential operator on X that is elliptic in directions transverse to the G-orbits. Using Kasparov products over $C^{*} G$, we prove index formulas equating indices of elliptic operators on $K \backslash X$ with linear combinations of multiplicities of G-representations in $\operatorname{kernel}(T)-\operatorname{kernel}\left(T^{*}\right)$.

Introduction. Let a connected unimodular Lie group G act smoothly on a closed manifold X. Let T be a G-invariant first order differential operator on X that is elliptic in directions transverse to the G-orbits. $\operatorname{Kernel}(T)$ and $\operatorname{kernel}\left(T^{*}\right)$ need not be finite-dimensional, but they are direct sums of irreducible G-representations, each occurring with finite multiplicity. (We work with assumptions, described in §2, that guarantee that we have Hilbert space structures and unitary G-representations as needed.) The following is then an interesting index problem. For each irreducible G-representation π, calculate the difference:
multiplicity of π in $\operatorname{ker}(T)$ - multiplicity of π in $\operatorname{ker}\left(T^{*}\right)$.
M. Atiyah and I. Singer studied the index theory of invariant operators elliptic in directions transverse to the orbits of a compact Lie group action [At1]. They phrased the index problem as the computation of a distribution on G. Let α^{+}, respectively α^{-}, be the representation of G on $\operatorname{ker}(T)$, respectively $\operatorname{ker}\left(T^{*}\right)$. The index distribution is then the functional on $C^{\infty}(G)$ defined for $f \in C^{\infty}(G)$ by

$$
f \rightarrow \operatorname{Tr}\left(\int_{G} f(g) \alpha^{+}(g) d g\right)-\operatorname{Tr}\left(\int_{G} f(G) \alpha^{-}(G) d g\right) .
$$

M. Vergne has now given a formula for this distribution in a neighborhood of the identity [Ve]. The foundations of this approach to the index problem extend to noncompact $G[\mathbf{S i n}][\mathrm{NeZi}]$.

In this paper we focus on the direct calculation of the difference of multiplicities when G acts locally freely. For a locally free action

