THE EFFECT OF DIMENSION ON CERTAIN GEOMETRIC PROBLEMS OF IRREGULARITIES OF DISTRIBUTION

RALPH ALEXANDER

Suppose that equal numbers of red and blue points, all distinct, lie in the euclidean space \mathbf{E}^t , and consider a hyperplane h containing none of the points. If H is one of the open halfspaces determined by h, let D(h) denote |r(h) - b(h)| where r(h) and b(h) are the numbers of red and blue points lying in H. What can be said about the number $\sup D(h)$ as h ranges over all hyperplanes? The present article addresses this and similar problems of discrepancy principally by developing estimates of L^2 integral averages of D(h) with respect to the invariant measure on the planesets of \mathbf{E}^t . Special attention is given to the influence of the dimension t.

The aim is to develop inequalities that involve only absolute constants and simple geometric properties of a given pointmass distribution. For example, the following theorem is an immediate corollary to more general results in this article.

THEOREM A. Let p_1, p_2, \ldots, p_N span \mathbf{E}^t and be two-colored as described above. Then there is an absolute positive constant c such that

 $\sup D(h) \ge c \max\{t, (\delta/\rho)^{1/2} t^{-1/4} [\min(\log N, t)]^{-3/4} \sqrt{N}\}$

where δ is the minimum distance between distinct points and ρ is the maximum distance, or diameter, of the pointset.

The investigation continues that in [A1], but it also draws upon a number of results in [A2]. The present work differs markedly from the earlier in that the dimension of the space is taken as a variable. This type of problem can be generalized to convex bodies other than half-spaces, but in this article we shall focus our attention on halfspaces. This seems to be a fundamental setting in which to study the relationship between irregularities of distribution and convexity. Moreover, the methods developed in [A1] and [A2] may be applied directly to this problem. For an excellent recent report on estimates of discrepancy concerning a wide variety of geometric shapes the reader is referred to the book [BC] by J. Beck and W. W. L. Chen.