CONJUGATES OF STRONGLY EQUIVARIANT MAPS

SALMAN ABDULALI

Let $\tau: X_1 \to X_2$ be a strongly equivariant holomorphic embedding of one bounded symmetric domain into another. We show that if σ is an automorphism of C, then $\tau^{\sigma}: X_1^{\sigma} \to X_2^{\sigma}$ is also strongly equivariant.

1. Introduction. A semisimple algebraic group, G, over \mathbf{Q} , is said to be of hermitian type if $G(\mathbf{R})^0/K$ is a bounded symmetric domain for a maximal compact subgroup K of $G(\mathbf{R})^0$. Let X_1 and X_2 be bounded symmetric domains associated with algebraic groups G_1 and G_2 respectively. A holomorphic embedding $\tau: X_1 \rightarrow$ X_2 is called weakly equivariant if there exists a homomorphism of algebraic groups $\rho: G_1 \rightarrow G_2$ defined over \mathbf{Q} , such that

(1.1) $\rho(g) \cdot \tau(x) = \tau(g \cdot x)$ for all $g \in G_1(\mathbf{R})^0$ and all $x \in X_1$.

 τ is called strongly equivariant if, in addition, the image of X_1 is totally geodesic in X_2 . It is not known, at least to me, whether every weakly equivariant holomorphic map of bounded symmetric domains is strongly equivariant.

Strongly equivariant maps form the central theme of Satake's book [21]. They have (at least) two important applications to number theory. If G_2 is a symplectic group, then X_2 parametrizes a universal family of abelian varieties. Pulling back the universal family to X_1 , and taking the quotient by an arithmetic group, gives a family of abelian varieties called a Kuga fiber variety. These are defined in [10], where Kuga calls τ a (generalized) Eichler map. For the second application, to compactification of arithmetic varieties, see [20] and also [4], where strongly equivariant maps are called symmetric maps.