THE DISTRIBUTION MOD n OF FRACTIONS WITH BOUNDED PARTIAL QUOTIENTS

Doug Hensley

Given a reduced fraction c / d with $0<c<d$, there is a unique continued fraction expansion of c / d as $\left[0 ; a_{1}, a_{2}, \ldots a_{r}\right]$ with $r \geq 1,0 \leq a_{j}$ for $1 \leq j \leq r$, and $a_{r} \geq 2$. For fixed positive integer n, the asymptotic distribution of the pair $(c, d) \bmod n$ among the $n^{2} \prod_{p \mid n}\left(1-1 / p^{2}\right)$ possible pairs of congruence classes is uniform when averaged over the set $Q(x):=\{(c, d): 0<c<d \leq x, \operatorname{gcd}(c, d)=1\}$ as $x \rightarrow \infty$. The main result is that if attention is restricted to the (rather thin) subset $Q_{m}(x)$ of relatively prime pairs (c, d) so that all the continued fraction convergents $a_{j} \leq m$, the same equidistribution holds. As a corollary, the relative frequency, both in $Q(x)$ and in $Q_{m}(x)$ for any fixed $m>1$, of reduced fractions (c, d) so that $d \equiv b \bmod n$, is asymptotic to $n^{-1} \prod_{p \mid g c d(b, n)}\left(1-p^{-1}\right) \prod_{q \mid n}\left(1-q^{-2}\right)^{-1}$. These results lend further heuristic support to Zaremba's conjecture, which in this terminology reads that for some m (perhaps even $m=2$) the set of denominators d occurring in $Q_{m}(x)$ includes all but finitely many natural numbers. The proofs proceed from some recent estimates for the asymptotic size of $Q_{m}(x)$. Thereafter, the argument is combinatorial.

1. Introduction. Among fractions c / d with $0 \leq c<d$, $\operatorname{gcd}(c, d)=1$, and $d \leq x$, asymptotically equal proportions have $(c, d) \equiv(0,1) \bmod 2, \quad(c, d) \equiv(1,0) \bmod 2$, and $(c, d) \equiv(1,1)$ $\bmod 2$. (The proof is immediate and is left to the reader.) The same equidistribution among classes $(a \bmod n, b \bmod n) \quad$ with $\operatorname{gcd}(\operatorname{gcd}(a, n), \operatorname{gcd}(b, n))=1$ holds by a fairly simple inclusion and exclusion calculation. Numerical experimentation and Occam's razor both suggest that the same equidistribution should hold when attention is restricted to fractions c / d of the form $\left[0 ; a_{1}, a_{2}, \ldots a_{r}\right]$ with $a_{r}>1, r \geq 1$ and all $a_{i} \leq m$. So it is. But before giving
