THE DISTRIBUTION MOD *n* OF FRACTIONS WITH BOUNDED PARTIAL QUOTIENTS

DOUG HENSLEY

Given a reduced fraction c/d with 0 < c < d, there is a unique continued fraction expansion of c/das $[0; a_1, a_2, \ldots a_r]$ with $r \ge 1, 0 \le a_j$ for $1 \le j \le r$, and $a_r \ge 2$. For fixed positive integer n, the asymptotic distribution of the pair $(c, d) \mod n$ among the $n^2 \prod_{p|n} (1 - 1/p^2)$ possible pairs of congruence classes is uniform when averaged over the set $Q(x) := \{(c, d) : 0 < c < d < x, \gcd(c, d) = 1\}$ as $x \to \infty$. The main result is that if attention is restricted to the (rather thin) subset $Q_m(x)$ of relatively prime pairs (c, d) so that all the continued fraction convergents $a_i < m$, the same equidistribution holds. As a corollary, the relative frequency, both in Q(x) and in $Q_m(x)$ for any fixed m > 1, of reduced fractions (c, d) so that $d \equiv b \mod n$, is asymptotic to $n^{-1} \prod_{p|gcd(b,n)} (1-p^{-1}) \prod_{q|n} (1-q^{-2})^{-1}$. These results lend further heuristic support to Zaremba's conjecture, which in this terminology reads that for some m(perhaps even m = 2) the set of denominators d occurring in $Q_m(x)$ includes all but finitely many natural numbers. The proofs proceed from some recent estimates for the asymptotic size of $Q_m(x)$. Thereafter, the argument is combinatorial.

1. Introduction. Among fractions c/d with $0 \le c < d$, gcd (c,d) = 1, and $d \le x$, asymptotically equal proportions have $(c,d) \equiv (0,1) \mod 2$, $(c,d) \equiv (1,0) \mod 2$, and $(c,d) \equiv (1,1) \mod 2$. (The proof is immediate and is left to the reader.) The same equidistribution among classes $(a \mod n, b \mod n)$ with gcd $(\gcd (a, n), \gcd (b, n)) = 1$ holds by a fairly simple inclusion and exclusion calculation. Numerical experimentation and Occam's razor both suggest that the same equidistribution should hold when attention is restricted to fractions c/d of the form $[0; a_1, a_2, \ldots a_r]$ with $a_r > 1, r \ge 1$ and all $a_i \le m$. So it is. But before giving