ON DIVISORS OF SUMS OF INTEGERS V

A. SÁrközy and C. L. Stewart

Dedicated to Professor P. Erdős on the occasion of his eightieth birthday.

Let N be a positive integer and let A and B be subsets of $\{1, \ldots, N\}$. In this article we shall estimate both the maximum and the average of $\omega(a+b)$, the number of distinct prime factors of $a+b$, where a and b are from A and B respectively.

1. Introduction. For any set X let $|X|$ denote its cardinality and for any integer n larger than one let $\omega(n)$ denote the number of distinct prime factors of n. Let I be an integer larger than one and let ϵ be a positive real number. Let $2=p_{1}, p_{2}, \ldots$ be the sequence of prime numbers in increasing order and let m be that positive integer for which $p_{1} \cdots p_{m} \leq N \leq p_{1} \cdots p_{m+1}$. In [3], Erdős, Pomerance, Sárközy and Stewart proved that there exist positive numbers C_{0} and C_{1} which are effectively computable in terms of ϵ, such that if N exceeds C_{0} and A and B are subsets of $\{1, \ldots, N\}$ with $(|A||B|)^{1 / 2}>\epsilon N$ then there exist integers a from A and b from B for which

$$
\omega(a+b)>m-C_{1} \sqrt{m} .
$$

They also showed that there is a positive real number ϵ, with $\epsilon<1$, and an effectively computable positive number C_{2} such that for each positive integer N there is a subset A of $\{1, \ldots, N\}$ with $|A| \geq \epsilon N$ for which

$$
\max _{a, a^{\prime} \in A} \omega\left(a+a^{\prime}\right)<m-\frac{C_{2} \sqrt{m}}{\log m} .
$$

Notice by the prime number theorem that

$$
m=(1+o(1))(\log N) /(\log \log N)
$$

