THE L^p THEORY OF STANDARD HOMOMORPHISMS

F. GHAHRAMANI AND S. GRABINER

Suppose that $\phi: L^1(\omega_1) \to L^1(\omega_2)$ is a continuous nonzero homomorphism between weighted convolution algebras on R^+ , and let ϕ also designate the extension of this map to the corresponding measure algebras $M(\omega_1)$ and $M(\omega_2)$. For $1 , we prove: (a) the semigroup <math>\mu_t = \phi(\delta_t)$ acts as a strongly continuous semigroup on $L^p(\omega_2)$; (b) Whenever $L^1(\omega_1) * f$ is dense in $L^1(\omega_1)$, then $L^p(\omega_2) * \phi(f)$ is dense in $L^p(\omega_2)$; (c) Each h in $L^p(\omega_2)$ can be factored as $h = \phi(f) * g$; (d) ϕ is continuous from the strong operator topology of $M(\omega_1)$ acting on $L^1(\omega_1)$.

1. Introduction. In this paper we show that the L^p analogue of a number of questions we have studied ([10], [8], [11], [7]) involving homomorphisms and semigroups on weighted L^1 spaces on $R^+ =$ $[0, \infty)$ all have positive answers when $1 . If <math>\omega(t) > 0$ is a Borel function on R^+ which is locally bounded and locally bounded away from 0 and if $1 \le p < \infty$, we let $L^p(\omega)$ be the Banach space of (equivalence classes of) measurable functions on R^+ with $f\omega$ in $L^p(R^+)$, with the inherited norm

$$||f|| = ||f||_{\omega,p} = ||f\omega||_p = \left(\int_0^\infty |f(t)\omega(t)|^p dt\right)^{1/p}.$$

We are particularly interested in the case that $L^{1}(\omega)$ is a Banach algebra and all $L^{p}(\omega)$ are $L^{1}(\omega)$ -modules under the usual convolution multiplication $f * g(x) = \int_{0}^{x} f(x - t)g(t) dt$. Therefore we will usually assume that $\omega(t)$ is an *algebra weight*, that is $\omega(t)$ satisfies:

(1) $\omega(x+y) \le \omega(x)\omega(y);$

- (2) $\omega(x)$ is right continuous;
- (3) $\omega(0) = 1$.

(1), (2), and (3) are just normalizations and are essentially equivalent to $L^{1}(\omega)$ being an algebra in which case $L^{p}(\omega)$ is an $L^{1}(\omega)$ module [9], where the module action is convolution. The most