TOPOLOGIES FOR FUNCTION SPACES

RICHARD ARENS AND JAMES DUGUNDJI

1. Introduction. Let Z^Y denote the class of continuous functions (or "mappings," or "maps ")

$$
(1.1) \t\t f: Y \to Z
$$

of a topological space *Y* into another Z. A great variety of topologies *t* may be introduced into Z^Y making it into a topological space $Z^Y(t)$. The topologies we deal with in this paper can be classified by using the notion of "continuous con vergence" of directed sets (generalized sequences) f_{μ} in Z^Y as follows: with no reference to any topology $Z^{\bar{Y}}$, we can say \bar{f}_{μ} converges continuously (Frink [1]; Kuratowski [2]) to $f(f_\mu)$ and f are elements of Z^Y if

$$
(1.2)\qquad f_{\mu}(y_{\nu}) \to f(y)
$$

whenever $y_\nu \to y$ in Y. (We use the " \to " for convergence as in (1.2), as well as for indicating the domain-range relation as in (1.1). The context prevents confusion.) We can classify the topologies t for Z^Y according as to whether

 (1.3) convergence in $Z^{Y}(t)$ implies continuous convergence

or

(1.4) continuous convergence implies convergence in $Z^{Y}(t)$.

Certainly there are other topologies possible in Z^Y , but we do not discuss these. There may be a topology t satisfying both (1.3) and (1.4) , but if so it is unique; see (5.6).

An apparently different approach to the same classification is suggested by homotopy theory. Beside *Y* and Z, consider a third space *X.* For a function *g* de fined on $X \times Y$ with values in Z, we can define $g^*(x)$ mapping X into Z^Y by setting $g^*(x)(y) = g(x,y)$. Then a topology t for Z^Y may be such that, for any X ,

(1.5) if g is continuous, then g^* is continuous,

or

(1.6) if g* is continuous, then *g* is continuous.

Received May 12, 1950.

Pacific J. Math. **1 (1951), 5-31.**