FINE STRUCTURE OF THE MACKEY MACHINE FOR ACTIONS OF ABELIAN GROUPS WITH CONSTANT MACKEY OBSTRUCTION

SIEGFRIED ECHTERHOFF AND JONATHAN ROSENBERG

Let G be a locally compact group, $\omega \in Z^2(G, \mathbb{T})$ a (measurable) multiplier on G, and denote by $C^*(G,\omega)$ the twisted group C^* -algebra of G defined by ω . We are only interested in multipliers up to equivalence, so we always tacitly assume that one is free to vary a multiplier within its cohomology class in $H^2(G,\mathbb{T})$. In this paper we are basically concerned with the following two problems: the first is to determine the structure of $C^*(G,\omega)$, where ω is a type I multiplier on the locally compact abelian group G, and the second is to describe the crossed product $A \rtimes_{\alpha} G$ of a continuous-trace C^* -algebra A by an action of an abelian group G, such that the corresponding action of G on \widehat{A} has constant stabilizer N, and the Mackey obstruction to extending an irreducible representation ρ of A to a covariant representation (ρ, U) of (A, N, α_N) is equal to a constant multiplier $\omega \in H^2(N,\mathbb{T})$ for all $\rho \in \widehat{A}$. The second of these problems is the obvious starting point for the study of the "fine structure of the Mackey machine", for actions of abelian groups on continuous-trace algebras with "continuously varying" stabilizers and Mackey obstructions.

In case where all Mackey obstructions are trivial, i.e. if α is pointwise unitary on the stabilizer subgroup N, these systems have been investigated extensively in the literature (see for instance [18; 22; 24; 27; 28]), and there are also some results for the case of continuously varying stabilizers [6; 26]. But in recent years there has been almost no progress in the investigation of crossed products with non-trivial Mackey obstructions. However, it turns out that many techniques for the investigation of crossed products by pointwise unitary actions can be used also for the case of non-trivial Mackey obstructions.

Let us explain our results in more detail. In Section 1 we start with investigation of the twisted group algebras $C^*(G,\omega)$ of an abelian group G and a multiplier $\omega \in Z^2(G,\mathbb{T})$. Recall that $C^*(G,\omega)$ can be realized in different ways. It is possible to write $C^*(G,\omega)$ as a completion of $L^1(G,\omega)$, the L^1 -algebra of G with convolution and involution twisted by ω , or we can write $C^*(G,\omega)$ as the Green twisted product $\mathbb{C} \rtimes_{\tau_\omega} G(\omega)$, where $G(\omega)$