SOME BASIC BILATERAL SUMS AND INTEGRALS

MOURAD E.H. ISMAIL AND MIZAN RAHMAN

By splitting the real line into intervals of unit length a doubly infinite integral of the form $\int_{-\infty}^{\infty} F(q^x) dx$, 0 < q < 1, can clearly be expressed as $\int_0^1 \sum_{n=-\infty}^{\infty} F(q^{x+n}) dx$, provided Fsatisfies the appropriate conditions. This simple idea is used to prove Ramanujan's integral analogues of his $_1\psi_1$ sum and give a new proof of Askey and Roy's extention of it. Integral analogues of the well-poised $_2\psi_2$ sum as well as the very-wellpoised $_6\psi_6$ sum are also found in a straightforward manner. An extension to a very-well-poised and balanced $_8\psi_8$ series is also given. A direct proof of a recent q-beta integral of Ismail and Masson is given.

1. Introduction.

The familiar form of the classical beta integral of Euler is

(1.1)
$$B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt = \frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)},$$

Re (a, b) > 0. A less familiar form, obtained by a simple change of variable, is

(1.2)
$$B(a,b) = \int_0^\infty \frac{t^{a-1} dt}{(1+t)^{a+b}}$$

There have been many extensions of both these forms, see, for example, Askey [2-5], Askey and Roy [6], Gasper [9, 10], Rahman and Suslov [18], and the references therein. A "curious" extension of (1.2) that was given by Ramanujan [21] in 1915 is

(1.3)
$$\int_0^\infty t^{a-1} \frac{(-tq^{a+b}; q)_\infty}{(-t; q)_\infty} dt = \frac{\Gamma(a) \Gamma(1-a)}{\Gamma_q(a) \Gamma_q(1-a)} \frac{\Gamma_q(a) \Gamma_q(b)}{\Gamma_q(a+b)},$$

where Re (a, b) > 0, 0 < q < 1, the q-gamma function $\Gamma_q(x)$ is defined by

(1.4)
$$\Gamma_q(x) = \frac{(q; q)_\infty}{(q^x; q)_\infty} (1-q)^{1-x}, \quad x \neq 0, -1, -2, \dots,$$