PACIFIC JOURNAL OF MATHEMATICS Vol. 171 No. 1 1995

HOLOMORPHY TESTS BASED ON CAUCHY'S INTEGRAL FORMULA

CARMEN CASCANTE AND DANIEL PASCUAS

We prove some holomorphy tests based on the Cauchy integral formula for the unit disk, the upper half-plane and the complex plane.

1. Statement of the problems and results.

1.1. The classical Morera problem consists on studying the closed rectifiable curves Γ on the complex plane \mathbb{C} such that any continuous function f on \mathbb{C} satisfying

(1.1)
$$\int_{\Gamma} (f \circ \sigma)(z) \, dz = 0,$$

for every $\sigma \in M(2)$, is entire. Here M(2) denotes the group of holomorphic rigid motions of \mathbb{C} , that is the group of all the mappings of the form $\sigma(z) = \alpha z + \beta$, $\alpha, \beta \in \mathbb{C}$, $|\alpha| = 1$.

If Γ is the boundary of a "regular" domain Ω then the above problem is equivalent to the classical Pompeiu problem, *i.e.* when the only continuous function f on \mathbb{C} such that

$$\int_{\Omega} (f \circ \sigma)(z) \, dm(z) = 0, \qquad ext{for every } \sigma \in M(2),$$

is $f \equiv 0$.

Note that both problems are invariant under the action of the group M(2), in the sense that if Γ (respectively, Ω) has the Morera (resp., Pompeiu) property then $\sigma(\Gamma)$ (resp., $\sigma(\Omega)$) also does, for every $\sigma \in M(2)$.

A lot of work on those problems has been done by several authors, among them, Brown, Schreiber and Taylor [8], Zalcman [23], Berenstein [1], Berenstein and Yang [4], Williams [21, 22], Brown and Kahane [7], Garofalo and Segala [12, 13], and Ebenfelt [10].

One of the most general results known about the Morera problem is the following: if Γ is a non real-analytic curve which is the boundary of a Jordan Lipschitz domain then Γ has the Morera property.