ON COMPLETE METRICS OF NONNEGATIVE CURVATURE ON 2-PLANE BUNDLES

DAGANG YANG

This paper is an attempt to understand the 2-plane bundle case for the converse of the soul theorem due to J. Cheeger and D Gromoll. It is shown that there is a class of 2-plane bundles over certain S^2 -bundles that carry complete metrics of nonnegative sectional curvature. In particular, every 2plane bundle and every S^1 -bundle over the connected sum $CP^n \# \overline{CP}^n$ of CP^n with a negative CP^n carries a 2-parameter family of complete metrics with nonnegative sectional curvature.

A complete noncompact Riemannian manifold with nonnegative curvature $(K \ge 0)$ is diffeomorphic to the normal bundle of a closed totally geodesic submanifold of the noncompact manifold according to a fundamental theorem due to J. Cheeger and D. Gromoll [4]. They also proposed the following problem: Which vector bundles over closed manifolds with $K \ge 0$ carry complete metrics with $K \ge 0$?

This paper is an attempt to understand the 2-plane bundle case. For a class of 2-plane bundles and S^1 -bundles, we show that there exist families of complete metrics with $K \ge 0$. Our main result is the following

Theorem. Every 2-plane bundle and every S^1 -bundle over the connected sum $\mathbb{C}P^n \# \overline{\mathbb{C}P}^n$ of $\mathbb{C}P^n$ with a negative $\mathbb{C}P^n$ carries a 2-parameter family of complete metrics with $K \geq 0$. More generally, let (B,h) be a Hodge manifold with positive Kahlerian curvature and let M be an associated S^2 bundle over B. Then, there is a two dimensional subspace $\tilde{H}^2(M)$, generated by two integral cohomology classes, in the cohomology group $H^*(M)$ such that every principal S^1 -bundle and every 2-plane bundle over M supported by an Euler class in $\tilde{H}^2(M)$ carries a 2-parameter family of complete metrics with $K \geq 0$.

Notice that B can be the product of any number of copies of complex projective spaces with the scaled Fubini-Study metric. When $B = \mathbb{C}P^n$, then $M = \mathbb{C}P^{n+1} \# \overline{\mathbb{C}P}^{n+1}$.

It is worthwhile to point out that examples of complete manifolds with $K \ge 0$ remain scarce. Indeed, all previously known examples of manifolds