PACIFIC JOURNAL OF MATHEMATICS Vol. 175, No. 1, 1996

SOME PROPERTIES OF FANO MANIFOLDS THAT ARE ZEROS OF SECTIONS IN HOMOGENEOUS VECTOR BUNDLES OVER GRASSMANNIANS

OLIVER KÜCHLE

Let X be a Fano manifold which is the zero scheme of a general global section s in an irreducible homogeneous vector bundle over a Grassmannian. We prove that the restriction of the Plücker embedding embeds X projectively normal, and that every small deformation of X comes from a deformation of the section s. These results are strengthened in the case of Fano 4-folds.

Introduction.

Let $Gr(k, n) = \mathbf{SL}(n, \mathbb{C})/P_k$ be the Grassmannian of k-dimensional quotients of n-dimensional complex space \mathbb{C}^n considered as quotient of $\mathbf{SL}(n, \mathbb{C})$ by a maximal parabolic subgroup P_k . Then (irreducible) representations of P_k give rise to (irreducible) homogeneous vector bundles over Gr(k, n). The purpose of this note is to prove the following theorems:

Theorem 1. Let X be a Fano manifold which is the zero scheme of a general global section in a globally generated irreducible homogeneous vector bundle \mathcal{F} over Gr(k,n). Then X is projectively normal.

Here by a Fano manifold we mean a manifold X with ample anticanonical divisor $-K_X$, and $X \subset Gr(k,n)$ is considered to be embedded by the restriction of the Plücker embedding.

Theorem 2. Let X be as above. Then every small deformation of X is again the zero scheme of a section in the same homogeneous bundle.

Moreover it becomes obvious from the proof that the bundle \mathcal{F} in Theorem 1 can be replaced by the sum of one irreducible vector bundle and line bundles.

Concerning Fano 4-folds we have a slightly more general result:

Theorem 3. Suppose dim(X) = 4 and that the Picard group Pic(X) of X is generated by $\mathcal{O}_X(-K_X)$. Then the statements of Theorems 1 and 2 remain