GLOBAL ANALYTIC HYPOELLIPTICITY OF \Box_b ON CIRCULAR DOMAINS

SO-CHIN CHEN

Let D be a smoothly bounded pseudoconvex domain in \mathbb{C}^n , $n \geq 2$, with real analytic boundary. In this paper we show that \Box_b is globally analytic hypoelliptic if D is either circular satisfying $\sum_{j=1}^n z_j \frac{\partial r}{\partial z_j}(z) \neq 0$ near the boundary bD, where r(z) is a defining function for D, or Reinhardt.

I. Introduction.

Let D be a smoothly bounded pseudoconvex domain in \mathbb{C}^n , $n \geq 2$, with real analytic boundary, and let \mathbb{C}^n be equipped with the standard Euclidean metric. We consider the real analytic regularity problem of the \Box_{b} - equation on the boundary. Namely, given any $f \in C^{\omega}_{p,q}(bD)$, $0 \leq p \leq n-1$ and $1 \leq q \leq n-1$, let $u = N_b f \in L^2_{p,q}(bD)$ be the solution to the following equation,

(1.1)
$$\Box_b u = \left(\overline{\partial}_b \overline{\partial}_b^* + \overline{\partial}_b^* \overline{\partial}_b\right) N_b f = f.$$

Then we ask: is $u = N_b f \in C_{p,q}^{\omega}(bD)$? For the definitions of these notations the reader is referred to Section II.

The existence of the solution $u = N_b f$ is an immediate consequence of the closedness of the range of \Box_b which was proved by M.C.Shaw [17] and Boas and M.C.Shaw [1], and independently by Kohn [15]. Since $u = N_b f$ is the canonical solution to the equation (1.1), it is unique. It also follows from Proposition 2.7. Next the real analyticity of the boundary bD implies that $u = N_b f$ is smooth, i.e., $u \in C_{p,q}^{\infty}(bD)$. For instance see Kohn [14][16]. Therefore, the main concern here is about the real analytic regularity of the solution u. The only result we know so far is that the answer is affirmative when D is of strict pseudoconvexity which is due to Tartakoff [18][19][20] and Treves [21] for $n \geq 3$ and to Geller [13] for n = 2.

The purpose of this article is to prove the following main results which presumably yield the first positive result to this problem on weakly pseudoconvex domains.