PACIFIC JOURNAL OF MATHEMATICS Vol. 176, No. 1, 1996

SOLVABILITY OF DIRICHLET PROBLEMS FOR SEMILINEAR ELLIPTIC EQUATIONS ON CERTAIN DOMAINS

ZHIREN JIN

We demonstrate a method to solve Dirichlet problems for semilinear elliptic equations on certain domains by a combination of change of variables, variational method and supersub- solutions method. We show that Dirichlet problems for a semilinear elliptic equation have a least one solution as long as a relationship between the growth rate of the nonlinear term and the size of the domain is satisfied. The result can be applied to semilinear elliptic equations with super-critical growth.

1. Introduction and Results.

Let Ω be a bounded domain in \mathbb{R}^n , n > 2. We consider the Dirichlet problem for a semilinear elliptic equation

$$(D_0) \qquad \begin{cases} -\Delta u = f(x, u) & \text{ in } \Omega; \\ u = 0 & \text{ on } \partial\Omega, \end{cases}$$

where Δ is the standard Laplace operator, f(x, u) is a local Hölder continuous function defined on $\overline{\Omega} \times R$.

Throughout the paper, we assume that:

(†) There are positive constants $M_1, M_2, q \ge 1$, such that

$$|f(x,t)| \le M_1 + M_2 |t|^q$$
 for all $x \in \overline{\Omega}, t \in R$.

The main result of paper is

Theorem 1. There is a constant c(n,q) depending only on n and q, such that if we assume

(1) (†); (2) $|\Omega| \le c(n,q) \left(M_2 M_1^{q-1} \right)^{-\frac{n}{2q}},$