Semi cubical theory on higher obstruction

By Katuhiko Mizuno

(Received Sept. 9, 1959)

Let Y be a simply connected topological space which has vanishing homotopy groups $\pi_{i}(Y)$ for $0 \leqq i<n, n<i<q$, and $q<i<r<2 q-1$, and let K be a geometric complex with subcomplex L and $f: K^{n}, ~ L \rightarrow Y$ be a mapping extensible to a map $K^{q+1} \cup L \rightarrow Y$. We discussed the third obstruction to the extension of f in [3].

It is the purpose of this paper to establish the higher obstruction theorems in the general cases by the aid of results of our preceding paper along the line of Eilenberg-MacLane [2]. This paper makes full use of the results and terminologies of the preceding paper of the author [4].

1. Preliminary

Let K and L are S.Q. complexes, we shall define the standard maps $f: K \times L \rightarrow$ $K \otimes L$ and $g: K \otimes L \rightarrow K \times L$ between the cartesian and the tensor product. First $\operatorname{map} f$ is defined by

$$
f(\sigma \times \tau)=\Sigma_{\beta} \beta_{1}^{*} \sigma \otimes \beta_{2}^{*} \tau \quad \text { if } \operatorname{dim} \sigma=\operatorname{dim} \tau=r
$$

where β is going round the family of pairs $\left(\beta_{1}, \beta_{2}\right)$ such that

$$
\begin{aligned}
& \beta_{i}: I^{m_{i}} \rightarrow I^{r}, \quad 0 \leqq m_{i} \leqq r, m_{1}+m_{2}=r, \\
& \beta_{1}\left(t_{1}, \cdots, t_{m_{1}}\right)=\left(t_{1}, \cdots, t_{m_{1}}, 0, \cdots, 0\right), \\
& \beta_{2}\left(t_{1}, \cdots, t_{m_{2}}\right)=\left(1, \cdots, 1, t_{1}, \cdots, t_{m_{2}}\right),
\end{aligned}
$$

namely $\beta_{1}^{*}=F^{0 \cdot m_{2}}=F_{m_{1}+1}^{0} \cdots F_{r}^{0}$ and $\beta_{2}^{*}={ }^{m_{1}} F^{1}=F_{0}^{1} \cdots F_{m_{1}}^{1}$. Second map g is defined by

$$
g(\sigma \otimes \tau)=\Sigma_{\alpha} \mathcal{P}(\alpha) \alpha_{1}^{*} \sigma \times \alpha_{2}^{*} \tau \quad \text { if } \operatorname{dim} \sigma=m_{1}, \operatorname{dim} \tau=m_{2}
$$

where α is going round the family of pairs (α_{1}, α_{2}) such that
and

$$
\begin{array}{ll}
\alpha_{i}: I^{r} \rightarrow I^{m_{i}}, \quad r=m_{1}+m_{2}, & \\
\alpha_{1}\left(t_{1}, \cdots, t_{r}\right)=\left(t_{i_{1}}, \cdots, t_{i_{m_{1}}}\right) & i_{1}<\cdots<i_{m_{1}}, \\
\alpha_{2}\left(t_{1}, \cdots, t_{r}\right)=\left(t_{j_{1}}, \cdots, t_{j_{m_{2}}}\right) & j_{1}<\cdots<j_{m_{2}},
\end{array}
$$

$$
\mathcal{P}(\boldsymbol{\alpha})=\operatorname{Sgn} .\binom{1, \cdots \cdots \cdots \cdots \cdots \cdots, \ldots, r}{i_{1}, \cdots, i_{m_{1}}, j_{1}, \cdots, j_{m_{2}}} .
$$

Lemma 1.1. If K and L are S.Q. complexes, then each of the composites fg and $g f$ is chain homotopic to the appropriate identity map.

The proof of this lemma is similar to that of Eilenberg-Zilber theorem [1] in the S.S. complexes, and therefore we omit it.

