The structure of rings whose quotient rings are primitive rings with minimal one sided ideals

By Manabu Harada

(Received October 22, 1959)
Recently A. W. Goldie [2] has proved that the quotient ring of a prime ring with some ascending chain condition is a simple ring with minimal condition. In this note we shall show that we can obtain the properties of a ring whose quotient ring is a primitive ring with minimal one sided ideals (P.M.I.), which are analogous to those of a prime ring in [2]. The following example shows that there exists such a ring.

Let I be the ring of rational integers. Let R_{n} be a sub-ring of matrix ring with infinite degree over the ring of rational numbers such that

$$
\left(\begin{array}{llll}
\left(a_{i j}\right) & & & \\
& 2 m_{1} & & \\
& & 2 m_{2} & \\
& & \ddots
\end{array}\right) m_{i} \in I, \quad\left(a_{i j}\right) \in I_{n} .
$$

Let $R=\bigcup_{n} R_{n}$, then if an element a of R is not zero divisor, a is the following form :

$$
a=\left(\begin{array}{lllll}
\left(a_{i j}\right) & & & & \\
& 2 m_{1} & & \\
& & 2 m_{2} & \\
& & \ddots
\end{array}\right) \quad\left|a_{i j}\right| \neq 0, \quad m_{i} \neq 0 .
$$

Hence the right (and left) quotient ring of R is $Q=\cup Q_{n}$:

$$
Q_{n}=\left(\begin{array}{cccc}
\left(a_{i j}\right) & & & \\
& m_{1} & \\
& & m_{2} & \\
& & \ddots
\end{array}\right) \quad\left(a_{i j}\right) \in Q_{n} \text { and } m_{i} \in Q^{\prime},
$$

where Q^{\prime} is the ring of rational numbers, and Q is P.M.I. .
In this note there are many statements which overlap [2], but we shall repeat those for the sake of completeness.

1. Preliminaries.

Let R be a ring with the right and left quotient ring Q and we shall call non zero divisor elements regular elements. We shall denote one sided ideals of R by Roman and ones of Q by German.

We have the following statements.

