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In this note we shall define the weak dimension of algebras 4, analogous to
the dimension of algebras in Cartan and FEilenberg [6], Ch. IX. In section 1 we
shall characterize the algebras with the weak dimension zero, and study some pro-
perties of the weak dimension of the tensor product of two algebras, and we shall
completely determine the weak dimension of fields. If an algebra A has a finite
degree over a field K, it is well known that A is separable if and only if AR A*
(=4% is semi-simple, where A* is anti-isomorphic to 4. Rosenberg and Zelinsky
[15] proved that if 4¢ is a semi-simple algebra with minimum conditions, then
[4:K]<oo. Therefore if we want to define some generalized separability of alge-
bras with infinite degree over K, then we may restrict ourselves to the case where
A% is semi-simple in the sense of Jacobson. In section 2 we shall call 4 R-separable
if A° is regular, and 4 has the property E, if AQL is regular for any field L=K.
We shall consider these algebras and relations between these two algebras. In
section 3 we shall study some properties of tensor products of separable fields and
algebras. In this note we always assume an algebra 4 has a unit element and
that A-modules are unitary. We use [6] as a reference source for homological
algebras.

1. The weak dimension of algebras

Let 4 be an algebra over a commutative ring K. We shall define the weak
dimension of 4 (notation w.dim A), analogous to Cartan and Eilenberg [6], Ch.
IX. 7.

DEeFINITION 1. w.dim A=the minimal integer n such that
Hoi(4, A=Torli,(A, £)=0
for any two sided A-module A.

First we state some remarks about the definition. Let A be an algebra over

a field K. If 4° is Noetherian or if A is semi-primary with radical N such that
[4/N: K] <o, then we have

w.dim A=w.dim 4=dim A=dimA

from [6], Ch. VI, Exer. 3, and Auslander [2], Coro. 8 and [3], Th. 5.



