Journal of the Institute of Polytechnics, Osaka City University, Vol. 9, No. 2, Series A

A note on Hattori's theorems

By Manabu HARADA

(Received June 30, 1958)

Recently Hattori [3] has given a characterization of Prüfer rings. In this short note we shall show that this characterization is valid for a commatative ring with a slightly weaker property than that of an integral domain.

Let Λ be a commutative ring and S be a set of non zero divisors which possesses the following properties:

1) $S \ge 1$; 2) S is closed under multiplication.

We shall denote Λ_s the ring of quotients of Λ with respect to S. We shall call an element a of a Λ -module A a torsion element if sa=0 for some $s \in S$. The torsion elements form a submodule tA of A. We can define a torsion-free module, divisible element, etc. similarly to the case of an integral domain.

We can easily obtain the following results:

1) we have an exact sequence

$$0 \to tA \to A \to A_s = A \otimes A_s$$

for any A-module A,

- 2) Λ_s is Λ -flat,
- 3) w. $dim_A A_s = w. dim_{A_s} A_s$ for any A-module A,
- 4) we have

$$\{Tor_n^A(A,C)\}_s \approx Tor_n^{A_s}(A_s,C_s)$$

for any A-modules A and C. (See Cartan and Eilenberg [1], VII, Exer's 9 and 10).

From now on we shall always assume that Λ_s is regular.

For instance, an integral domain has this property. Let Λ be a complete direct sum of integral domains, then Λ_s is regular, where S is the set of non-zero divisors.

PROPOSITION 1. Let A be a torsion-free, divisible A-module. Then w. dim $_{A}A = 0$.

Proof. If A is torsion-free and divisible, we can regard A as a Λ_s -module by the following definition.

For $\frac{\mu}{\lambda} \epsilon \Lambda_s(\lambda \epsilon s)$, and $a \epsilon A$, there exists a unique element b in A such that $\lambda b = a$. We define $-\frac{\mu}{\lambda} \cdot a = \mu b$. From equalities: $-\frac{\mu}{\lambda} \cdot a = \mu \left(-\frac{1}{\lambda}a\right) = -\frac{1}{\lambda}(\mu a)$ we can prove that A is a Λ_s -module. By an inclusion mapping: $\Lambda \to \Lambda_s$ and 2) we have