Journal of the Institute of Polytechnics, Osaka City University, Vol. 9, No. 1, Series A

Cohomology mod p of symmetric products of spheres

By Minoru NAKAOKA

(Received September 28, 1957) (Revised December 14, 1957)

Throughout this paper, we denote by \mathfrak{S}_m the symmetric group of degree m, K a finite simplicial complex and p a fixed prime integer. The group \mathfrak{S}_m operates in a natural way on the *m*-fold cartesian product $\mathfrak{X}_m(K) = K \times K \times \cdots \times K$. The orbit space $\mathfrak{S}_m(K)$ over $\mathfrak{X}_m(K)$ relative to \mathfrak{S}_m is called the *m*-fold symmetric product. We study in the present paper the cohomology mod p of the symmetric product $\mathfrak{S}_m(S^n)$ of an *n*-sphere S^n . However the method we use will be applicable for calculation of cohomology of the symmetric product of more general complexes.

Let St^{I} denote the iterated Steenrod reduced powers, and $v_{0,m}$ a generator of $H^{n}(\mathfrak{S}_{m}(S^{n}); Z_{p}) \approx Z_{p}$. Then our main theorem is stated as follows⁰: If q < n and $p^{h} \leq m < p^{h+1}$, the vector space $H^{n+q}(\mathfrak{S}_{m}(S^{n}); Z_{p})$ has a base formed by elements $\operatorname{St}^{I}v_{0,m}$, where I runs over the set of all admissible and special elements with degree q and length $\leq h$. (See §3 for the precise definitions.)

The method we use is as follows.

Let $\mathfrak{S}_{\infty}(K)$ denote the infinite symmetric product of K. It follows from a result in my paper [7] that the injection homomorphism $\iota_m^* \colon H^q(\mathfrak{S}_{\infty}(K); \mathbb{Z}_p) \longrightarrow H^q(\mathfrak{S}_m(K); \mathbb{Z}_p)$ Z_p) is an epimorphism. As was proved by Dold-Thom [4], $\mathfrak{S}_{\infty}(K)$ is a product of the Eilenberg-MacLane complexes. Therefore we can describe a set of generators for $H^q(\mathfrak{S}_m(K); \mathbb{Z}_p)$ in virtue of the Cartan's computation [2]. In order to examine if these generators are linearly independent, we choose a particular p-Sylow subgroup \mathfrak{G}_m of \mathfrak{S}_m , and consider the orbit space $\mathfrak{G}_m(K)$ over $\mathfrak{X}_m(K)$ relative to \mathfrak{G}_m . The natural projection defines a homomorphism $\rho^*: H^q(\mathfrak{S}_m(K); Z_p) \to H^q(\mathfrak{S}_m(K); Z_p).$ We prove it by using of the transfer homomorphism that ρ^* is a monomorphism. Let $m = a_0 p^h + a_1 p^{h-1} + \cdots + a_h \ (0 \le a_i < p)$ be the *p*-adic expansion of *m*, and denote by $\mathfrak{Z}_p(K)$ the p-fold cyclic product of K (i.e. the orbit space over $\mathfrak{X}_{p}(K)$ relative to the subgroup $\mathfrak{Z}_p \subset \mathfrak{S}_p$ of cyclic permutations). Then we have that $\mathfrak{G}_m(K)$ is homeomorphic with the space $\mathfrak{X}_{a_0}(\mathfrak{Z}_p^h(K)) \times \mathfrak{X}_{a_1}(\mathfrak{Z}_p^{h-1}(K)) \times \cdots \times \mathfrak{X}_{a_h}(K)$, where $\mathfrak{Z}_p^r(K)$ denotes the iterated cyclic product $\mathfrak{Z}_p\mathfrak{Z}_p\cdots\mathfrak{Z}_p(K)$ (r-times) of K. As for the cohomology structure of $\mathfrak{Z}_p(K)$, I have studied in the paper [6]. By making use of some results there, we analyse the cohomology structure mod p of $\mathfrak{Z}_p^{p}(K)$, and we determine the dependence of the generators.

^{0) (}Added April 14, 1958) I have recently succeeded in determination of the cohomology ring $H^*(\mathfrak{G}_m(S^n); \mathbb{Z}_p).$