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The arithmetical ideal theory in rings may be regarded as that in semi

groups, which can be treated as a generalization of the former. The arithmetical 

ideal theory in commutative semigroups was investigated for the firat time by 

Clifford ([4]) and then by Lorenzen ([8]). Sorne of the result of Clifford was 

extended to the noncommutative case by Kawada and Kondo ([7]). In the 

present paper we shall develop the arithmetical ideal theory in (noncommutative) 
semigroups, which is a generalization of that in noncommutative rings (cf. [1], 

[2] and [6]). 

As preliminaries we deal in § 1 with the factorization of integral elements 

in a lattice-ordered group and in § 2 we give an abstract foundation of Artin

Hencke's ideal theory ([5]). Let S be a semigroup with unity quantity. The 

concepts of orders, maximal orders, ideals etc. in S are defined similarly as in 

rings. By using the results of § 1, 2 we discus in § 4 the theory of two-sided 

ideals with respect to a maximal order of S. We consider closed ideals 

(Lorenzen's r-ideals), i.e. ideals closed with respect to a given closure operation, 

by which a mapping of the set of all two-sided ideals in itself is defined. In 

order that the set of all closed two-sided o-ideals, o a given regular order, forms 

an abelian group, which is a direct product of infinite cyclic groups, it is neces

sary and sufficient that Noether's axioms hold for o. Let o be a regular arder 

of S, for which Noether's axioms hold. The closure operation defined over two

sided o-ideals can be extended over o-sets containing regular elements. (A subset 

A of S is called a o-set if oA = Ao = A.) A closed sub-semigroup of S containing 

ois called a o-semigroup. We determine in ~5 all o-semigroups. They form a 

Boolian algebra with respect to inclusion relation. In ~ 7 we shall consider the 

Brandt's gruppoid of normal ideals. The factorlzation of integral normal ideals 

may be regarded as the factorization of integral elements in a lattice-ordered 

gruppoid, which will be treated in § 6. 

§ 1. Faetorization of integral elements in a lattiee-ordered group. 

Let G be a lattice-ordered group Cl-group) with unity quantity e. Elements 

of G will be denoted by smallletters with or without suffices. W e do not assume 

the multiplication to be commutative, except when we mention it particularly. 


