ON THE STRUCTURE OF A BOUNDED DOMAIN WITH A SPECIAL BOUNDARY POINT, II

Akio KODAMA

(Received April 26, 1986)

Introduction. This is a continuation of our previous paper [10]. We shall establish some extensions of Wong's characterization [19] of the open unit ball \mathcal{B}^n in \mathbb{C}^n . Also we generalize a theorem of Behrens [2] derived from our result [9], and finally improve our main theorem in [10].

As a generalization of the notion of strictly pseudoconvex domains with C^2 -smooth boundaries, we introduced in [10] the notion of domains with piecewise C^2 -smooth boundaries of special type (see section 1). Now Wong [19] has given characterizations of the open unit ball \mathcal{B}^n in \mathbb{C}^n among bounded strictly pseudoconvex domains with C^{∞} -smooth boundaries. Our first purpose of this paper is to show that analogous characterizations are still valid for our domains with piecewise C^2 -smooth boundaries of special type. In fact, by a direct application of our result [10], we shall establish the following extension of the Wong's result [19]:

Theorem I. Let D be a bounded domain in $C^n(n>1)$ with piecewise C^2 smooth boundary of special type and let Aut(D) be the Lie group of all biholomorphic automorphisms of D. Then the following statements are mutually equivalent:

- (i) D is biholomorphically equivalent to \mathcal{B}^{n} .
- (ii) D is homogeneous.
- (iii) Aut(D) is non-compact.
- (iv) There exists a compact subset K of D such that $Aut(D) \cdot K = D$.

Corollary 1. Let D be a bounded domain in $C^n(n>1)$ with piecewise C^2 -smooth boundary of special type. We assume that the boundary ∂D of D is not C^2 -smooth globally, that is, ∂D has a corner. Then Aut(D) is compact.

Corollary 2. Let D be a bounded circular domain in $\mathbb{C}^n(n>1)$ with piecewise C^2 -smooth, but not smooth, boundary of special type and assume $o \in D$, where o denotes the origin of \mathbb{C}^n . Then every element of Aut(D) keeps o fixed and hence is linear.

Next we assume that a complex manifold M can be exhausted by biholo-