Wada, T. Osaka J. Math. **36** (1999), 905-918

SCATTERING THEORY FOR TIME-DEPENDENT HARTREE-FOCK TYPE EQUATION

Takeshi WADA

(Received November 4, 1997)

1. Introduction

In this paper we consider the scattering problem for the following system of nonlinear Schrödinger equations with nonlocal interaction

(1)
$$i\frac{\partial}{\partial t}u_j = -\frac{1}{2}\Delta u_j + f_j(\vec{u}), \quad (t,x) \in \mathbf{R} \times \mathbf{R}^n,$$

(2)
$$u_j(0,x) = \phi_j(x), \qquad j = 1, \cdots, N.$$

Here Δ denotes the Laplacian in x,

$$f_j(\vec{u}) = \sum_{k=1}^N (V * |u_k|^2) u_j - \sum_{k=1}^N [V * (u_j \bar{u}_k)] u_k,$$

and * denotes the convolution in \mathbb{R}^n . In this paper we treat the case $n \ge 2$ and $V(x) = |x|^{-\gamma}$ with $0 < \gamma < n$.

The system (1)-(2) appears in the quantum mechanics as an approximation to a fermionic N-body system and is called the time-dependent Hartree-Fock type equation.

Throughout the paper we use the following notation:

 $\mathbf{N} = \{1, 2, 3, \cdots\}, \ \nabla = (\partial/\partial x_1, \cdots, \partial/\partial x_n), \ U(t) = \exp(it\Delta/2), M(t) = \exp(i|x|^2/2t), \ J = U(t)xU(-t) = M(t)(it\nabla)M(-t). \ \text{For } 1 \le p \le \infty, \ p' = p/(p-1), \\ \delta(p) = n/2 - n/p. \ \|\cdot\|_p \ \text{denotes the norm of } L^p(\mathbf{R}^n) \ \text{(if } p = 2, \ \text{we write } \|\cdot\|_2 = \|\cdot\|). \ \text{For } 1 \le q, r \le \infty \ \text{and for the interval } I \subset \mathbf{R}, \ \|\cdot\|_{q,r,I} \ \text{denotes the norm of } L^r(I; L^q(\mathbf{R}^n)), \ \text{namely, } \|u\|_{q,r,I} = \left[\int_I \left(\int_{\mathbf{R}^n} |u(t,x)|^q dx\right)^{r/q} dt\right]^{1/r}. \ \text{For positive interval } L^{p,r} = L^{p,r} \ \text{denotes the Jilbert encoded as}$

integers l and m, $\Sigma^{l,m}$ denotes the Hilbert space defined as

$$\Sigma^{l,m} = \Big\{ \psi \in L^2(\mathbf{R}^n); \|\psi\|_{\Sigma^{l,m}} = \Big(\sum_{|\alpha| \le l} \|\nabla^{\alpha}\psi\|^2 + \sum_{|\beta| \le m} \|x^{\beta}\psi\|^2 \Big)^{1/2} < \infty \Big\}.$$

When we use N'th direct sums of various function spaces, we denote them by the same symbols and denote these elements by writing arrow over the letter, like \vec{f} .

Now we state our main theorem.