A THREE-MANIFOLD INVARIANT VIA THE KONTSEVICH INTEGRAL

Thang Tu Quoc LE, Hitoshi MURAKAMI, Jun MURAKAMI and Tomotada OHTSUKI

(Received September 01, 1997)

We construct an invariant for closed, oriented three-manifolds from the Kontsevich integral of framed links, and show that it includes Lescop's generalization of the Casson-Walker invariant. Combining this result and a formula for computing the Kontsevich integral in [17], we can compute the Casson-Walker invariant combinatorially in terms of q-tangles (non-associative tangles in [3]).

Our invariant is obtained from the Kontsevich integral by imposing the threeterm (3T) relation, orientation independence (OI) relation, 0 -vanishing relation and 1 -vanishing relation to the space of chord diagrams subjected to the four-term relation. The $3 T$ relation is given by
(3T relation)

Here, dotted lines present chords and the three chord diagrams are identical except within the region where they are as above. The OI relation is given as follows. Let D be a chord diagram and let D^{\prime} be a chord diagram obtained by changing the orientation of a string s of D. Then
(OI relation)

$$
D^{\prime}=(-1)^{e(s)} D .
$$

Here $e(s)$ denotes the number of end points of chords on s. The 0 -vanishing relation means that a chord diagram having a string with no end points of chords is equal to 0 , and the 1 -vanishing relation means that a chord diagram having a string with only one end point of chords is equal to 0 .

The Kontsevich integral \hat{Z}_{f} of a framed link has values in the space of chord diagrams subject to the four-term relation $[13,2,17]$. Let $\nu=\hat{Z}_{f}(\bigcirc)$ for the trivial knot \bigcirc, which is equal to the factor introduced in $[2,17]$ to normalize the effect of maximal and minimal points. For an ℓ-component oriented framed link L, let

$$
\check{Z}_{f}(L)=\hat{Z}_{f}(L) \#(\nu, \nu, \cdots, \nu) .
$$

This means that we connect-sum ν to each string of $\hat{Z}_{f}(L)$. Let $\Lambda^{\prime}(L)$ be the image of $\check{Z}_{f}(L)$ by the quotient of the space of chord diagrams by 3 T , OI,

