Kawanaka, N. Osaka J. Math. **36** (1999), 157–176

A *q*-SERIES IDENTITY INVOLVING SCHUR FUNCTIONS AND RELATED TOPICS

Dedicated to Professor Takeshi Hirai on his sixtieth birthday

NORIAKI KAWANAKA

(Received August 8, 1997)

1. Introduction

The main purpose of this paper is to prove:

Theorem 1.1. For a Young diagram $\lambda = (\lambda_1, \lambda_2, \lambda_3, ...), s_{\lambda}(x) = s_{\lambda}(x_1, x_2, x_3, ...)$ denotes the corresponding Schur function, and, for each node v in the diagram λ , h(v) denotes the hook length of λ at v. Then we have the following identity with a parameter q:

(1.1)
$$\sum_{\lambda} I_{\lambda}(q) s_{\lambda}(x) = \prod_{i} \prod_{r=0}^{\infty} \frac{1 + x_{i} q^{r+1}}{1 - x_{i} q^{r}} \prod_{i < j} \frac{1}{1 - x_{i} x_{j}},$$

where

(1.2)
$$I_{\lambda}(q) = \prod_{v \in \lambda} \frac{1 + q^{h(v)}}{1 - q^{h(v)}},$$

and the sum on the left of (1.1) is taken over all Young diagrams λ .

When q = 0, (1.1) reduces to the identity

(1.3)
$$\sum_{\lambda} s_{\lambda}(x) = \prod_{i} \frac{1}{1 - x_i} \prod_{i < j} \frac{1}{1 - x_i x_j}$$

due to Schur and Littlewood (see [12], I, 5, Ex. 4). On the other hand, when $x_1 = z$ and $x_2 = x_3 = \cdots = 0$, (1.1) reduces to the t = q case of the q-binomial theorem

This reserch was partially supported by JSPS and DFG as a part of the Joint Reserch Project "Representation Theory of Finite and Algebraic Groups" (1997-99) under the Japanese-German Cooperative Science Promotion Program.