Ei, H. and Ito, S. Osaka J. Math. **35** (1998), 821-834

DECOMPOSITION THEOREM ON INVERTIBLE SUBSTITUTIONS

HIROMI EI and SHUNJI ITO

(Received April 21, 1997)

0. Introduction

The decomposition theorem of automorphisms of free group is well known, and we mention the statement in the case of rank 2.

Theorem ([1]). Let $G\{1,2\}$ be a free group generated by symbols 1 and 2. Then any automorphism of $G\{1,2\}$ is decomposed by three automorphisms:

$$\alpha: \left\{ \begin{array}{ll} 1 \rightarrow 2\\ 2 \rightarrow 1 \end{array} \right\}, \quad \beta: \left\{ \begin{array}{ll} 1 \rightarrow 12\\ 2 \rightarrow 1 \end{array} \right\}, \quad \gamma: \left\{ \begin{array}{ll} 1 \rightarrow 1\\ 2 \rightarrow 2^{-1} \end{array} \right\}.$$

Recently Zhi-Xiong Wen and Zhi-Ying Wen give the decomposition theorem of invertible substitutions of rank 2, where we say an automorphism σ is an invertible substitution if words $\sigma(1)$ and $\sigma(2)$ consist of the symbols 1 or 2.

Theorem ([2]). Any invertible substitution is generated by three invertible substitutions:

$$\alpha: \left\{ \begin{array}{ll} 1 \rightarrow 2 \\ 2 \rightarrow 1 \end{array} \right\}, \quad \beta: \left\{ \begin{array}{l} 1 \rightarrow 12 \\ 2 \rightarrow 1 \end{array} \right\}, \quad \delta: \left\{ \begin{array}{l} 1 \rightarrow 21 \\ 2 \rightarrow 1 \end{array} \right\}$$

In this paper we give a simple proof of the theorem and a geometrical charactarization of invertible substitutions.

1. Proof of the theorem

Let us introduce the canonical homomorphism $\mathbf{f}: G\{1,2\} \to \mathbf{Z}^2$ as follows:

$$\mathbf{f}(i^{\pm 1}) := \pm \mathbf{e}_i, \quad i = 1, 2$$

$$\mathbf{f}(W) := \mathbf{f}(s_1) + \mathbf{f}(s_2) + \dots + \mathbf{f}(s_k) \quad \text{for} \quad W = s_1 s_2 \cdots s_k \in G\{1, 2\}$$

where $\{e_1, e_2\}$ be canonical basis in \mathbb{R}^2 . Then we know the following property.