ON THE TRACE NORM ESTIMATE OF THE TROTTER PRODUCT FORMULA FOR SCHRÖDINGER OPERATORS

SATOSHI TAKANOBU*

(Received March 24, 1997)

0. Introduction

It is well-known that for the Schrödinger operator $(-1/2)\Delta + V$ with a nonnegative continuous potential V in the space $L_2(\mathbb{R}^d)$, the Trotter product formula

(0.1)
$$\lim_{n \to \infty} (e^{-tV/n} e^{-t(-(1/2)\Delta)/n})^n = e^{-t(-(1/2)\Delta + V)}$$

and its variant

(0.2)
$$\lim_{n \to \infty} \left(e^{-tV/2n} e^{-t(-(1/2)\Delta)/n} e^{-tV/2n} \right)^n = e^{-t(-(1/2)\Delta + V)}$$

hold in the strong operator topology. It has recently been discussed that if V is e.g. in \mathbb{C}^2 and satisfies

(0.3)
$$V(x) \ge c(1+|x|^2)^{\rho/2}$$

$$|\nabla^m V(x)| \le c_m (1+|x|^2)^{(\rho-m)+2}, \quad m=1,2$$

for some $0 \le \rho < \infty$, $0 < c < \infty$ and $0 \le c_1$, $c_2 < \infty$ (which is the condition from [2]), (0.1) and (0.2) are convergent in the L_p -operator norm ($1 \le p \le \infty$). More precisely, as $t \downarrow 0$

^{*}Research partially supported by Grant-in-Aid for Scientific Research No. 09304022, Ministry of Education, Science and Culture, Japanese Government.