Mandai, T. Osaka J. Math. **35** (1998), 381–396

ASYMPTOTIC SOLUTIONS AND EXACT SOLUTIONS FOR EXCEPTIONAL CASES OF SOME CHARACTERISTIC CAUCHY PROBLEMS

Takeshi MANDAI

(Received November 22, 1996)

1. Introduction

M.S.Baouendi and C.Goulaouic([1]) considered a Fuchsian partial differential operator with weight m - k

$$P = t^k \partial_t^m + \sum_{l=1}^k b_{m-l}(x) t^{k-l} \partial_t^{m-l} + \sum_{j+|\alpha| \le m, j < m} t^{\max\{j-m+k+1,0\}} c_{j,\alpha}(t,x) \partial_t^j \partial_x^\alpha,$$

where m is a positive integer, k is a non-negative integer, $b_{m-l}(x)$ are holomorphic functions in a neighborhood of $x = 0 \in \mathbb{C}^n$, and $c_{j,\alpha}(t,x)$ are holomorphic functions in a neighborhood of $(t,x) = (0,0) \in \mathbb{C} \times \mathbb{C}^n$. In the category of holomorphic functions, they showed the unique solvability of the characteristic Cauchy problem

(CP)
$$\begin{cases} Pu = f(x,t), \\ \partial_t^j u|_{t=0} = g_j(x) \quad (j = 0, 1, \dots, \omega(P) - 1) \quad (\omega(P) := m - k). \end{cases}$$

under the condition

(A)
$$\mathcal{C}^{(P)}(0;\lambda) \neq 0$$
 for $\lambda \in \omega(P) + \mathbf{N} := \{\omega(P), \omega(P) + 1, \dots\},\$

where $C^{(P)}(x;\lambda) := (\lambda)_m + \sum_{l=1}^k b_{m-l}(x)(\lambda)_{m-l}$ with $(\lambda)_j := \prod_{l=0}^{j-1} (\lambda - l)$. If the condition (A) is not satisfied, then the Cauchy problem does not necessarily have a holomorphic solution for every holomorphic Cauchy data. They also gave a similar result in the category of functions that are of C^{∞} class in t and holomorphic in x.

The polynomial $C^{(P)}(x;\lambda)$ of λ is called the *indicial polynomial* of P, and a root of $C^{(P)}(x;\lambda) = 0$ is called a *characteristic index* of P at x. A characteristic index λ is said to be *exceptional*, if $\lambda \in \omega(P) + N$. The case when (A) is not satisfied, that is, when some characteristic indices at x = 0 are exceptional, is called the *exceptional case*.