A CHARACTERIZATION OF CERTAIN DOMAINS WITH GOOD BOUNDARY POINTS IN THE SENSE OF GREENE-KRANTZ, III

Dedicated to Professor Masaru Takeuchi on his 60th birthday

AKIO KODAMA*

(Received May 10, 1994)

Introduction

This is a continuation of our previous papers [9, 10, 12]. For a domain D in C^n , we denote by Aut(D) the group of all biholomorphic automorphisms of D and write ∂D (resp. \overline{D}) for the boundary (resp. closure) of D.

Let D be a bounded domain in C^n and $x \in \partial D$. Assume that x is an accumulation point of an Aut(D)-orbit. Can we then determine the global structure of D from the local shape of ∂D near x? Of course, this is impossible without any further assumptions, as one may see in the examples such as the direct product of the open unit disk in C and an arbitrary bounded domain in C^{n-1} . In the previous papers [2,8,9,10,12], this was exclusively studied in the case where ∂D near x coincides with the boundary of a generalized complex ellipsoid

$$E(n; n_1, \dots, n_s; p_1, \dots, p_s)$$

$$= \{ (z_1, \dots, z_s) \in \mathbb{C}^{n_1} \times \dots \times \mathbb{C}^{n_s}; \sum_{i=1}^s ||z_i||^{2p_i} < 1 \}$$

in $C^n = C^{n_1} \times \cdots \times C^{n_s}$, where p_1, \dots, p_s are positive real numbers and n_1, \dots, n_s are positive integers with $n = n_1 + \cdots + n_s$.

The purpose of this paper is to establish the following extension of some results obtained in [2, 9, 10, 12]:

Theorem. Let D be a bounded domain in \mathbb{C}^n and $E = E(n; n_1, \dots, n_s; p_1, \dots, p_s)$ a generalized complex ellipsoid in \mathbb{C}^n . Let $x \in \partial D$. Assume that the following three conditions are satisfied:

- (1) p_1, \dots, p_s are all positive integers;
- (2) $x \in \partial E$ and there exists an open neighborhood Q of x in C^n such that

^{*} Partly supported by the Grant-in-Aid for Scientific Research, the Ministry of Education, Science and Culture, Japan.