Hattori, T Osaka J. Math. **32** (1995), 783-797

DISCRETE SPECTRUM OF SCHRÖDINGER OPERATORS WITH PERTURBED UNIFORM MAGNETIC FIELDS

TETSUYA HATTORI

(Received February 16, 1994)

1. Introduction

In this paper we study a Schrödinger operator with a magnetic field :

(1.1)
$$H = (-i\nabla - b(x))^2 + V(x)$$

defined on $C_0^{\infty}(\mathbf{R}^3)$, where $V \in L^2_{loc}(\mathbf{R}^3)$ is a scalar potential and $b \in C^1(\mathbf{R}^3)^3$ is a vector potential, both of which are real-valued, and $\vec{B}(x) = \nabla \times b$ is called the magnetic field. Let $x = (x_1, x_2, z) \in \mathbf{R}^3$, $\vec{\rho} = (x_1, x_2)$, r = |x|, $\rho = |\vec{\rho}|$, and $\nabla_2 = (\partial/\partial x_1, \partial/\partial x_2)$. Letting $T = -i\nabla - b(x)$, we define the quadratic form q_H by

$$q_{H}[\phi, \psi] = \int_{\mathbb{R}^{4}} (T\phi \cdot \overline{T\psi} + V\phi \overline{\psi}) dx,$$
$$q_{H}[\phi] = q_{H}[\phi, \phi]$$

for ϕ , $\psi \in C_0^{\infty}(\mathbf{R}^3)$. We assume that

(V1)
$$V(x) \rightarrow 0 \text{ as } |x| \rightarrow \infty.$$

Then H admits a unique self-adjoint realization in $L^2(\mathbf{R}^3)$ (denoted by the same notation H) with the domain

$$D(H) = \{ u \in L^{2}(\mathbf{R}^{3}); |V|^{1/2}u, Tu, Hu \in L^{2}(\mathbf{R}^{3}) \},\$$

which is associated with the closure of q_H (denoted by the same notation q_H) with the form domain

$$Q(H) = \{ u \in L^2(\mathbf{R}^3) ; |V|^{1/2} u, Tu \in L^2(\mathbf{R}^3) \},\$$

This fact can be proved in the same way as in the cases of the constant magnetic fields ([1] and [7]).

It is well known that, if $\vec{B}(x) \equiv 0$, then the finiteness or the infiniteness of the discrete spectrum of H depends on the decay order of the scalar potential V, of which the border is $|x|^{-2}([6])$. On the other hand, if $\vec{B}(x) \equiv (0, 0, B)$, B being a positive constant, then the number of the discrete spectrum of H is infinite under