LAGRANGEAN CONTACT STRUCTURES ON PROJECTIVE COTANGENT BUNDLES

Masaru TAKEUCHI

(Received April 16, 1993)

Introduction

Let (M, D) be a contact manifold of dimension $2 n-1, n \geq 2$, and $\left(E, E^{\prime}\right)$ a pair of subbundles of D. We say that ($D ; E, E^{\prime}$) is a Lagrangean contact structure on M if for each point $x \in M$ the fibres E_{x} and E_{x}^{\prime} are transversal Lagrangean subspaces of D_{x} with respect to the natural conformal symplectic structure of D_{x}.

An example of Lagrangean contact structure is given on the projective cotangent bundle $P\left(T^{*} M\right)$ of a manifold M of dimension n in the following way. Let D be the canonical contact structure on $P\left(T^{*} M\right)$. Suppose that a projective structure Q on M is given. For $[\lambda] \in P\left(T^{*} M\right)$, we define $E_{[\lambda]}^{\prime}$ to be the space of vertical vectors in $T_{[\lambda]}\left(P\left(T^{*} M\right)\right)$ for the projection $\varpi: P\left(T^{*} M\right) \rightarrow M$. Furthermore, choosing a local torsionfree connection η belonging to Q defined over a neighbourhood of $x=\varpi([\lambda]) \in M$, we define $E_{[\lambda]}$ to be the space of horizontal lifts to [$\left.\lambda\right]$ of vectors $X \in T_{x} M$ with $\lambda(X)=0$. It is determined by Q independently on the choice of η. These subspaces $E_{[\lambda]}, E_{[\lambda]}^{\prime}$ of $T_{[\lambda]}\left(P\left(T^{*} M\right)\right),[\lambda] \in P\left(T^{*} M\right)$, constitute subbundles E, E^{\prime} of D such that ($D ; E, E^{\prime}$) becomes a Lagrangean contact structure on $P\left(T^{*} M\right)$ (Theorem 4.2).

A typical one is the Lagrangean contact structure ($D_{0} ; E_{0}, E_{0}^{\prime}$) on the projective cotangent bundle of n-projective space P^{n} associated to the flat projective structure Q_{0} on P^{n}. A Lagrangean contact structure is said to be flat if it is locally isomorphic to ($D_{0} ; E_{0}, E_{0}^{\prime}$). The purpose of the present note is to prove:

The Lagrangean contact structure on $P\left(T^{*} M\right)$ associated to a projective structure Q on M is flat if and only if Q is projectively flat.

A conformal analogue to our theorem in the following form was proved by Miyaoka [2], Sato-Yamaguchi [3]: The Lie contact structure on the tangential sphere bundle $S(T M)$ associated to a conformal structure C on a manifold M is flat if and only if C is conformally flat, provided $\operatorname{dim} M \geq 3$.

