Takeuchi M. Osaka J. Math. **31** (1994), 837–860

LAGRANGEAN CONTACT STRUCTURES ON PROJECTIVE COTANGENT BUNDLES

MASARU TAKEUCHI

(Received April 16, 1993)

Introduction

Let (M,D) be a contact manifold of dimension 2n-1, $n \ge 2$, and (E,E') a pair of subbundles of D. We say that (D; E,E') is a Lagrangean contact structure on M if for each point $x \in M$ the fibres E_x and E'_x are transversal Lagrangean subspaces of D_x with respect to the natural conformal symplectic structure of D_x .

An example of Lagrangean contact structure is given on the projective cotangent bundle $P(T^*M)$ of a manifold M of dimension n in the following way. Let D be the canonical contact structure on $P(T^*M)$. Suppose that a projective structure Q on M is given. For $[\lambda] \in P(T^*M)$, we define $E'_{[\lambda]}$ to be the space of vertical vectors in $T_{[\lambda]}(P(T^*M))$ for the projection $\varpi: P(T^*M) \to M$. Furthermore, choosing a local torsionfree connection η belonging to Q defined over a neighbourhood of $x = \varpi([\lambda]) \in M$, we define $E_{[\lambda]}$ to be the space of horizontal lifts to $[\lambda]$ of vectors $X \in T_x M$ with $\lambda(X) = 0$. It is determined by Q independently on the choice of η . These subspaces $E_{[\lambda]}, E'_{[\lambda]}$ of $T_{[\lambda]}(P(T^*M)), [\lambda] \in P(T^*M)$, constitute subbundles E, E' of D such that (D; E, E') becomes a Lagrangean contact structure on $P(T^*M)$ (Theorem 4.2).

A typical one is the Lagrangean contact structure $(D_0; E_0, E'_0)$ on the projective cotangent bundle of *n*-projective space P^n associated to the flat projective structure Q_0 on P^n . A Lagrangean contact structure is said to be flat if it is locally isomorphic to $(D_0; E_0, E'_0)$. The purpose of the present note is to prove:

The Lagrangean contact structure on $P(T^*M)$ associated to a projective structure Q on M is flat if and only if Q is projectively flat.

A conformal analogue to our theorem in the following form was proved by Miyaoka [2], Sato-Yamaguchi [3]: The Lie contact structure on the tangential sphere bundle S(TM) associated to a conformal structure C on a manifold M is flat if and only if C is conformally flat, provided dim $M \ge 3$.