ASYMPTOTICS OF EIGENVALUES OF THE LAPLACIAN WITH SMALL SPHERICAL ROBIN BOUNDARY

SUSUMU ROPPONGI

(Received June 8, 1992)

1. Introduction

Let Ω be a bounded domain in \mathbb{R}^N with C^∞ boundary $\partial\Omega$. Let \tilde{w} be a fixed point in Ω and $B(\varepsilon, \tilde{w})$ be the ball of radius ε with the center \tilde{w} . We put $\Omega_{\varepsilon} = \Omega \setminus \overline{B(\varepsilon, \tilde{w})}$. Consider the following eigenvalue problem

(1.1)
$$-\Delta u(x) = \lambda u(x) \qquad x \in \Omega_{\epsilon}$$
$$u(x) = 0 \qquad x \in \partial \Omega$$
$$u(x) + k \varepsilon^{\sigma} \frac{\partial u}{\partial \nu_{x}}(x) = 0 \qquad x \in \partial B(\varepsilon, \tilde{w}).$$

Here k denotes a positive constant. And σ is a real number. Here $\partial/\partial \nu_x$ denotes the derivative along the exterior normal direction with respect to Ω_e .

Let $\mu_j(\varepsilon) > 0$ be the *j*-th eigenvalue of (1.1). Let μ_j be the *j*-th eigenvalue of the problem

(1.2)
$$-\Delta u(x) = \lambda u(x) \qquad x \in \Omega$$
$$u(x) = 0 \qquad x \in \partial \Omega.$$

Let G(x,y) (resp. $G_{\mathfrak{e}}(x,y)$) be the Green function of the Laplacian in Ω (resp. $\Omega_{\mathfrak{e}}$) associated with the boundary condition (1.2) (resp. (1.1)).

Main aim of this paper is to show the following Theorems. Let $\varphi_i(x)$ be the L^2 -normalized eigenfunction associated with μ_j . We have the following.

Theorem 1. Assume N=3. We fix j and $\sigma \ge 1$. Suppose that μ_j is simple. Then, for any fixed $s \in (0, 1)$,

(1.3)
$$\begin{split} \mu_{j}(\varepsilon) &= \mu_{j} + P_{j}\varepsilon + O(\varepsilon^{2-s}) & (\sigma \geq 2) \\ \mu_{j}(\varepsilon) &= \mu_{j} + P_{j}\varepsilon + O(\varepsilon^{\sigma}) & (1 < \sigma < 2) \\ \mu_{j}(\varepsilon) &= \mu_{j} + (1+k)^{-1}P_{j}\varepsilon + O(\varepsilon^{2-s}) & (\sigma = 1) , \end{split}$$

where

$$P_j = 4\pi \varphi_j(\tilde{w})^2 \, .$$