ASYMPTOTICS OF EIGENVALUES OF THE LAPLACIAN WITH SMALL SPHERICAL ROBIN BOUNDARY

Susumu ROPPONGI

(Received June 8, 1992)

1. Introduction

Let Ω be a bounded domain in \boldsymbol{R}^{N} with C^{∞} boundary $\partial \Omega$. Let \widetilde{w} be a fixed point in Ω and $B(\varepsilon, \widetilde{w})$ be the ball of radius ε with the center \widetilde{w}. We put $\Omega_{\mathrm{a}}=\Omega \backslash \overline{\boldsymbol{B}(\varepsilon, \tilde{w})}$. Consider the following eigenvalue problem

$$
\begin{array}{cll}
-\Delta u(x)=\lambda u(x) & x \in \Omega_{\mathfrak{z}} \tag{1.1}\\
u(x)=0 & x \in \partial \Omega \\
u(x)+k \varepsilon^{\sigma} \frac{\partial u}{\partial \nu_{x}}(x)=0 & \left.x \in \partial B_{(}^{\prime} \varepsilon, \widetilde{w}\right) .
\end{array}
$$

Here k denotes a positive constant. And σ is a real number. Here $\partial / \partial \nu_{x}$ denotes the derivative along the exterior normal direction with respect to Ω_{e}.

Let $\mu_{j}(\varepsilon)>0$ be the j-th eigenvalue of (1.1). Let μ_{j} be the j-th eigenvalue of the problem

$$
\begin{align*}
-\Delta u(x) & =\lambda u(x) & & x \in \Omega \tag{1.2}\\
u(x) & =0 & & x \in \partial \Omega .
\end{align*}
$$

Let $G(x, y)$ (resp, $G_{\mathrm{e}}(x, y)$) be the Green function of the Laplacian in Ω (resp. Ω_{q}) associated with the boundary condition (1.2) (resp. (1.1)).

Main aim of this paper is to show the following Theorems. Let $\varphi_{i}(x)$ be the L^{2}-normalized eigenfunction associated with μ_{j}. We have the following.

Theorem 1. Assume $N=3$. We fix j and $\sigma \geqq 1$. Suppose that μ_{j} is simple. Then, for any fixed $s \in(0,1)$,

$$
\begin{array}{ll}
\mu_{j}(\varepsilon)=\mu_{j}+P_{j} \varepsilon+O\left(\varepsilon^{2-s}\right) & (\quad \sigma \geqq 2) \tag{1.3}\\
\mu_{j}(\varepsilon)=\mu_{j}+P_{j} \varepsilon+O\left(\varepsilon^{\sigma}\right) & (1<\sigma<2) \\
\mu_{j}(\varepsilon)=\mu_{j}+(1+k)^{-1} P_{j} \varepsilon+O\left(\varepsilon^{2-s}\right) & (\quad \sigma=1),
\end{array}
$$

where

$$
P_{j}=4 \pi \varphi_{j}(\tilde{w})^{2}
$$

