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0. Introduction

The object of the present paper is to study some examples of the operators
of the form

(1) P = D2

x+a(x)D*y+b(x)Dy,

Λ Λ

on R2 where Dx=—i - , D — — i - , a(x) and b(x) are functions satisfying:
Qx dy

(2) (i) α(*),δ

(ϋ) a(x)>0 for *ΦO, 9χθ)=8^(0)=0 for any a.

We consider here C^-hypoellipticity of the operator P on x=0. In general
it is hypoelliptic if b(x) is small compared with a(x)9 and conversely, not hypo-
elliptic if b(x) is big. Such conditions for the hypoellipticity were investigated
in the previous paper [5], But the examples considered here cannot be explain-
ed by the method of [5] (we cannot regard b(x) small nor big in what follows).
They are analogous to the one which A. Menikoff considered in [6], i.e., the
finitely degenerate case where a(x)=x2k and b(x)=bxk~l. We prove the fol-
lowing theorems.

Theorem 1. Let a(x)=\x\ "4 exp(— 2\x\ -1) and b(x)=b \x\ ~4 exp

(— 1*1 "*) with b bang a complex constant. Then the operator P is hypoelliptic if
and only if b is not odd integer.

Theorem 2. Let a(x)=\x\~*exp(— 2\x\~l) and A(#)=£-sgn#- 1#|~4

exρ(— I x I -1) with b being a complex constant. Then the operator P is hypoelliptic.

REMARK 1: By the similar argument of the proof of theorem 1 in T.
Morioka [8], we can conclude that P is micro-hypoelliptic when P is hypoelliptic.

The hypoellipticity of P is closely connected to the branching of singulari-

ties of solutions for the weakly hyperbolic operator Q=— Dl-\-a(x)D2

y+b(x)Dy.


