SOME EXAMPLES OF HYPOELLIPTIC OPERATORS OF INFINITELY DEGENERATE TYPE

Toshiniko HOSHIRO

(Received June 8, 1992)

0. Introduction

The object of the present paper is to study some examples of the operators of the form

$$
\begin{equation*}
P=D_{x}^{2}+a(x) D_{y}^{2}+b(x) D_{y} \tag{1}
\end{equation*}
$$

on R^{2} where $D_{x}=-i \frac{\partial}{\partial x}, D_{y}=-i \frac{\partial}{\partial y}, a(x)$ and $b(x)$ are functions satisfying:
(i) $a(x), b(x) \in C^{=}(\boldsymbol{R})$,
(ii) $a(x)>0$ for $x \neq 0, \partial^{\infty} a(0)=\partial^{\alpha} b(0)=0$ for any α.

We consider here C^{∞}-hypoellipticity of the operator P on $x=0$. In general it is hypoelliptic if $b(x)$ is small compared with $a(x)$, and conversely, not hypoelliptic if $b(x)$ is big. Such conditions for the hypoellipticity were investigated in the previous paper [5]. But the examples considered here cannot be explained by the method of [5] (we cannot regard $b(x)$ small nor big in what follows). They are analogous to the one which A. Menikoff considered in [6], i.e., the finitely degenerate case where $a(x)=x^{2 k}$ and $b(x)=b x^{k-1}$. We prove the following theorems.

Theorem 1. Let $a(x)=|x|^{-4} \exp \left(-2|x|^{-1}\right)$ and $b(x)=b \cdot|x|^{-4} \exp$ $\left(-|x|^{-1}\right)$ with b being a complex constant. Then the operator P is hypoelliptic if and only if b is not odd integer.

Theorem 2. Let $a(x)=|x|^{-4} \exp \left(-2|x|^{-1}\right)$ and $b(x)=b \cdot \operatorname{sgn} x \cdot|x|^{-4}$ $\exp \left(-|x|^{-1}\right)$ with b being a complex constant. Then the operator P is hypoelliptic.

Remark 1: By the similar argument of the proof of theorem 1 in T. Morioka [8], we can conclude that P is micro-hypoelliptic when P is hypoelliptic.

The hypoellipticity of P is closely connected to the branching of singularities of solutions for the weakly hyperbolic operator $Q=-D_{x}^{2}+a(x) D_{y}^{2}+b(x) D_{y}$.

