ON THE K-THEORY OF PE7

HARUO MINAMI

(Received January 30, 1992)

0. Introduction

Let E_7 be the compact, connected, simply-connected, simple Lie group of type E_7 and let PE_7 be the projective group associated with E_7 . The purpose of this paper is to determine the algebras $K^*(PE_7)$ and $KO^*(PE_7)$ (Theorems 3.1 and 4.1) where K and KO denote respectively the complex and real K-theories. $K^*(PE_7)$ is already computed in [7, 9]. We study, however, it here again by the similar argument used to calculate $K^*(SO(n))$ and $KO^*(SO(n))$ in [11, 12]. Also in the same fashion we calculate $KO^*(PE_7)$ using certain results obtained in course of computation of $K^*(PE_7)$ as well as the results on $K^*(PE_7)$.

An outline of our method is as follows. Since the centre of E_7 is isomorphic to \mathbb{Z}_2 , we regard E_7 as a \mathbb{Z}_2 -space with the action of the centre as a subgroup. And we show that there exists a \mathbb{Z}_2 -equivariant map $S^{4,0} \to E_7$, which is a homomorphism of groups, where $S^{4,0}$ is the unit quaternions S^3 with antipodal involution. This map yields a homeomorphism

$$S^{4,0} \times_{\boldsymbol{Z_2}} E_7 \approx P^3 \times E_7$$

where P^3 is the real projective 3-space. Let h=K or KO and let h_{Z_2} denote the Z_2 -equivariant h-theory. Then we have a canonical isomorphism $h_{Z_2}^*(E_7) \cong h^*(PE_7)$ and furthermore $h_{Z_2}^*(S^{4,0} \times E_7) \cong h^*(P^3 \times E_7)$ induced by the above homeomorphism. Moreover we have a Kunneth isomorphism $h^*(P^3 \times E_7) \cong h^*(P^3) \otimes_{h^*(+)} h^*(E_7)$ since $h^*(E_7)$ is a free $h^*(+)$ -module as mentioned below (here + denotes a point). Making use of these isomorphisms and the Thom isomorphism in equivariant h-theory we carry out the calculation of $h^*(PE_7)$ by reducing to that of $h^*(P^3) \otimes_{h^*(+)} h^*(E_7)$ as in [11, 12]. For the algebras $h^*(P^3)$ and $h^*(E_7)$ we refer to [2, 5, 12] and [8, 13] respectively.

We use also the square formulas of [4, 12] (see (1.10) and (1.11) below). But we leave the 2nd exterior or exteriorlike power of the representation inserted into the functor $\beta()$ uncalculated since it is complicated.

§1 is devoted to recalling some basic facts needed for our computation and also §2 to collecting the results on the K-groups of E_7 and P^n (for small n needed in the sequel). In §3 we compute $K^*(PE_7)$ and in §§4, 5 we determine