ON THE K-THEORY OF PE7

Haruo MINAMI

(Received January 30, 1992)

0. Introduction

Let E_{7} be the compact, connected, simply-connected, simple Lie group of type E_{7} and let $P E_{7}$ be the projective group associated with E_{7}. The purpose of this paper is to determine the algebras $K^{*}\left(P E_{7}\right)$ and $K O *\left(P E_{7}\right)$ (Theorems 3.1 and 4.1) where K and $K O$ denote respectively the complex and real K-theories. $K^{*}\left(P E_{7}\right)$ is already computed in [7,9]. We study, however, it here again by the similar argument used to calculate $K^{*}(S O(n))$ and $K O^{*}(S O(n))$ in [11, 12]. Also in the same fashion we calculate $K O^{*}\left(P E_{7}\right)$ using certain results obtained in course of computation of $K^{*}\left(P E_{7}\right)$ as well as the results on $K^{*}\left(P E_{7}\right)$.

An outline of our method is as follows. Since the centre of E_{7} is isomorphic to \boldsymbol{Z}_{2}, we regard E_{7} as a \boldsymbol{Z}_{2}-space with the action of the centre as a subgroup. And we show that there exists a \boldsymbol{Z}_{2}-equivariant map $S^{4,0} \rightarrow E_{7}$, which is a homomorphism of groups, where $S^{4,0}$ is the unit quaternions S^{3} with antipodal involution. This map yields a homeomorphism

$$
S^{4,0} \times_{Z_{2}} E_{7} \approx P^{3} \times E_{7}
$$

where P^{3} is the real projective 3 -space. Let $h=K$ or $K O$ and let $h_{Z_{2}}$ denote the \boldsymbol{Z}_{2}-equivariant h-theory. Then we have a canonical isomorphism $h_{Z_{2}}^{*}\left(E_{7}\right) \cong$ $h^{*}\left(P E_{7}\right)$ and furthermore $h_{Z_{2}}^{*}\left(S^{4,0} \times E_{7}\right) \cong h^{*}\left(P^{3} \times E_{7}\right)$ induced by the above homeomorphism. Moreover we have a Künneth isomorphism $h^{*}\left(P^{3} \times E_{7}\right) \cong h^{*}\left(P^{3}\right)$ $\otimes_{h^{*}(+)} h^{*}\left(E_{7}\right)$ since $h^{*}\left(E_{7}\right)$ is a free $h^{*}(+)$-module as mentioned below (here + denotes a point). Making use of these isomorphisms and the Thom isomorphism in equivariant h-theory we carry out the calculation of $h^{*}\left(P E_{7}\right)$ by reducing to that of $h^{*}\left(P^{3}\right) \otimes_{h^{*}(+)} h^{*}\left(E_{7}\right)$ as in [11, 12]. For the algebras $h^{*}\left(P^{3}\right)$ and $h^{*}\left(E_{7}\right)$ we refer to $[2,5,12]$ and $[8,13]$ respectively.

We use also the square formulas of $[4,12]$ (see (1.10) and (1.11) below). But we leave the 2 nd exterior or exteriorlike power of the representation inserted into the functor $\beta(\quad)$ uncalculated since it is complicated.
$\S 1$ is devoted to recalling some basic facts needed for our computation and also $\S 2$ to collecting the results on the K-groups of E_{7} and P^{n} (for small n needed in the sequel). In $\S 3$ we compute $K^{*}\left(P E_{7}\right)$ and in $\S \S 4,5$ we determine

