Oda, S. Sato, J. and Yoshida, K. Osaka J. Math. 30 (1993), 119–135

HIGH DEGREE ANTI-INTEGRAL EXTENSIONS OF NOETHERIAN DOMAINS

SUSUMU ODA, JUNRO SATO and KEN-ICHI YOSHIDA

(Received January 30, 1991)

Introduction. Let R be a Noetherian integral domain and R[X] a polynomial ring. Let α be an element of an algebraic field extension L of the quotient field K of R and let $\pi: R[X] \to R[\alpha]$ be the R-algebra homomorphism sending X to α . Let $\varphi_{\alpha}(X)$ be the monic minimal polynomial of α over K with deg $\varphi_{\alpha}(X) = d$ and write $\varphi_{\alpha}(X) = X^d + \eta_1 X^{d-1} + \dots + \eta_d$. Let $I_{[\alpha]} := \bigcap_{i=1}^d (R:_R \eta_i)$. For $f(X) \in R[X]$, let C(f(X)) denote the ideal generated by the coefficients of f(X). Let $J_{[\alpha]} := I_{[\alpha]} C(\varphi_{\alpha}(X))$, which is an ideal of R and contains $I_{[\alpha]}$. The element α is called an anti-integral element of degree d over R if Ker $\pi = I_{[\alpha]} \varphi_{\alpha}(X) R[X]$. When α is an anti-integral element over R, $R[\alpha]$ is called an anti-integral element α is called an anti-integral element α and represent α is called a super-primitive element of degree d over R if $J_{[\alpha]} \oplus p$ for all primes p of depth one.

For $p \in \operatorname{Spec}(R)$, k(p) denotes the residue field R_p/pR_p and $\operatorname{rank}_{k(p)} R[\alpha] \otimes_R k(p)$ denotes the dimension as a vector space over k(p). We are interested in characterizing the flatness and the integrality of an anti-integral extension $R[\alpha]$ of R. Indeed, among others we obtain the following results:

- (i) $R[\alpha]$ is flat over R if and only if $\operatorname{rank}_{k(p)} R[\alpha] \otimes_R k(p) \le d$ for all $p \in \operatorname{Spec}(R)$,
- (ii) $R[\alpha]$ is integral over R if and only if $\operatorname{rank}_{k(p)} R[\alpha] \otimes_R k(p) = d$ for all $p \in \operatorname{Spec}(R)$.

Thus if an anti-integral extension $R[\alpha]$ is integral over R, then $R[\alpha]$ is flat over R. Concerning a super-primitive element, we obtain that if R is a Krull domain and α is an algebraic element over R, then α is a super-primitive element. We also obtain that a super-primitive element is an anti-integral element. More precisely, α is super-primitive over R if and only if α is anti-integral over R and $R[\alpha]_p$ is flat over R_p for any prime ideal p of depth one.

Using these results, we obtain the following:

Let $\Delta(S)$ denote the set $\{p \in \operatorname{Spec}(R) | \operatorname{rank}_{k(p)} S \otimes_R k(p) = d\}$, where S is an extension of R of degree d and let $Dp_1(R)$ denote the set of all prime ideals of R of depth one. Assume that [L:K]=d, and that $\alpha_1, \dots, \alpha_n \in L$ are anti-integral elements of degree d, and let $A=R[\alpha_1, \dots, \alpha_n]$. If $\Delta(R[\alpha_i]) \supset Dp_1(R)$ $(1 \le i \le n)$