Ozawa, S. Osaka J. Math. 29 (1992), 837-850

SINGULAR VARIATION OF DOMAIN AND SPECTRA OF THE LAPLACIAN WITH SMALL ROBIN CONDITIONAL BOUNDARY I.

Dedicated to Professor M.M. Schiffer on his 80th birthday

Shin OZAWA

(Received October 23, 1991)

1. Introduction

In this paper the author considers the following problem.

Let Ω be a bounded domain in \mathbb{R}^2 with smooth boundary $\partial \Omega$. Let \tilde{w} be a fixed point in Ω . Let $B(\varepsilon, \tilde{w})$ be the ball of radius ε with the center \tilde{w} . We put $\Omega_{\varepsilon} = \Omega \setminus \overline{B(\varepsilon, \tilde{w})}$. Consider the following eigenvalue problem

(1.1)
$$-\Delta u(x) = \lambda u(x) \qquad x \in \Omega_{e}$$
$$u(x) = 0 \qquad x \in \partial \Omega$$
$$u(x) + k \, \varepsilon^{\sigma} \frac{\partial u}{\partial \nu_{x}}(x) = 0 \qquad x \in \partial B_{e}.$$

Here k denotes the positive constant. And σ is a non negative constant. Here $\frac{\partial}{\partial \nu_x}$ denotes the derivative along the exterior normal direction with respect to Ω_s .

Let $\mu_j(\varepsilon) > 0$ be the *j*-th eigenvalue of (1.1). Let μ_j be the *j*-th eigenvalue of the problem

(1.2)
$$-\Delta u(x) = \lambda u(x) \qquad x \in \Omega$$
$$u(x) = 0 \qquad x \in \partial \Omega.$$

Let G(x, y) be the Green function of the Laplacian in Ω with the Dirichlet boundary condition on $\partial\Omega$ satisfying $-\Delta G(x, y) = \delta(x-y)$.

Main aim of this paper is to show the following Theorem 1. Let $\varphi_j(x)$ be the L^2 normalized eigenfunction associated with μ_j .

Theorem 1. Fix $\sigma \in (0, 1)$. Fix j. Assume that μ_j is a simple eigenvalue. Then,

(1.3)
$$\mu_{j}(\varepsilon) - \mu_{j} = 2\pi k^{-1} \varepsilon^{1-\sigma} \varphi_{j}(\tilde{w})^{2} + O(\varepsilon^{2-2\sigma}(\log \varepsilon)^{2}).$$