DIRECT SUMS OF ALMOST RELATIVE INJECTIVE MODULES

Manabu HARADA

(Received November 21, 1990)

Let R be a ring with identity. When we study almost relative injective modules, the following problem is essential: Assume that an R-module V is almost U_j -injective for R-modules U_j $(j=1, 2, \dots, n)$, then under what conditions is V also almost $\Sigma_j \oplus U_j$ -injective?

This problem is true without any assumptions, provided V is U_j -injective [2]. Y. Baba [3] gave an answer to the problem, when all V, U_j are uniform modules with finite length, and the author [6] generalized it to a case where the U_j are artinian indecomposable modules. Extending and utilizing the arguments given in [6], we shall drop the assumption "artinian" in this short note.

The proof will be completed by following the arguments given in [6]. Hence we shall explain only how we should modify the original proof in [6].

1. Preliminaries

Let R be a ring with identity. Every module in this paper is a right unitary R-module. We shall follow [3] and [6] for the terminologies. In [6], Theorem 2 we assumed that every module contained the non-zero socle. In this note we shall drop this assumption. Let W_1 and W_2 be R-modules. Take a diagram with V_2 a submodule of W_3 :

(1)
$$W_{2} \overset{i}{\leftarrow} V_{2} \leftarrow 0 \\ \downarrow g \\ W_{1} .$$

Consider the following two conditions:

- 1) There exists $\tilde{g}: W_2 \rightarrow W_1$ such that $\tilde{g} \mid V_2 = g$.
- 2) There exist a non-zero direct summand W of $W_2: W_2 = W \oplus W'$ and $\tilde{g}: W_1 \to W$ such that $\tilde{g}g = \pi \mid V_2$, where π is the projection of W_2 onto W. If either 1) or 2) holds true for any diagram (1), then we say that W_1 is almost W_2 -injective (if 1) always holds true, then we say that W_1 is W_2 -injective [2]).

We assume in the above that W_2 is indecomposable. If W_1 is almost