THREE-FOLD IRREGULAR BRANCHED COVERINGS OF SOME SPATIAL GRAPHS

Toshio HARIKAE

(Received May 22, 1990)

1. Introduction

A spatial graph is a graph embedded in a 3-sphere S^3 . In this paper, we consider three-fold irregular branched coverings of some spatial graphs. In particular, we investigate those of some of θ -curves and handcuff graphs in S^3 and prove that there exists at least one three-fold irregular branched covering of these graphs. Further, we identify these branched coverings. Hilden [4] and Montesinos [6] independently showed that every orientable closed 3-manifold is a three-fold irregular covering of S^3 , branched along a link.

Let L be a spatial graph and $G=\pi_1(S^3-L)$. Then there is a one-to-one correspondence between n-fold unbranched coverings of S^3-L and conjugacy classes of transitive representations of G into S_n , the symmetric group with n letters $\{0, 1, \dots, n-1\}$. Let μ be such a representation, called a monodromy map, and $T=\mu(G)$. Define T_0 as the subgroup of T that fixes letter 0. Then $\mu^{-1}(T_0)$ is the fundamental group of the unbranched covering associated with μ . To each unbranched covering of S^3-L there exists the unique completion $\tilde{M}_{\mu}(L)$ called the associated branched covering (see Fox [1]).

In this paper we investigate a monodromy map $\mu: G \rightarrow S_3$ which is surjective, i.e. the covering is irregular. We call μ an S_3 -representation of L. Further we only consider the case that the branched covering associated with μ is an orientable 3-manifold.

The author of the paper would like to express his sincere gratitude to Professor S. Kinoshita and Dr. K. Yoshikawa for their valuable advice.

2. Three-fold branched coverings of spatial θ -curves

In this section, let L denote a spatial θ -curve that consists of three egdes e_1 , e_2 and e_3 , each of which has distinct endpoints A and B. Suppose that each of e_1 , e_2 and e_3 is oriented from A to B. Then $G=\pi_1(S^3-L)$ is generated by $x_1, \dots, x_l; y_1, \dots, y_m; z_1, \dots, z_n$, where each of x_i, y_j and z_k corresponds to a meridian of each of e_1 , e_2 and e_3 , respectively. Note that every element of S_3 can be expressed as a^8b^e , where a=(01), b=(012); $\delta=0$, 1, $\epsilon=0$, 1, 2. We assume that