THREE-FOLD IRREGULAR BRANCHED COVERINGS OF SOME SPATIAL GRAPHS

Toshio HARIKAE

(Received May 22, 1990)

1. Introduction

A spatial graph is a graph embedded in a 3 -sphere S^{3}. In this paper, we consider three-fold irregular branched coverings of some spatial graphs. In particular, we investigate those of some of θ-curves and handcuff graphs in S^{3} and prove that there exists at least one three-fold irregular branched covering of these graphs. Further, we identify these branched coverings. Hilden [4] and Montesinos [6] independently showed that every orientable closed 3-manifold is a three-fold irregular covering of S^{3}, branched along a link.

Let L be a spatial graph and $G=\pi_{1}\left(S^{3}-L\right)$. Then there is a one-to-one correspondence between n-fold unbranched coverings of $S^{3}-L$ and conjugacy classes of transitive representations of G into S_{n}, the symmetric group with n letters $\{0,1, \cdots, n-1\}$. Let μ be such a representation, called a monodromy $m a p$, and $T=\mu(G)$. Define T_{0} as the subgroup of T that fixes letter 0 . Then $\mu^{-1}\left(T_{0}\right)$ is the fundamental group of the unbranched covering associated with μ. To each unbranched covering of $S^{3}-L$ there exists the unique completion $\tilde{M}_{\mu}(L)$ called the associated branched covering (see Fox [1])

In this paper we investigate a monodromy map $\mu: G \rightarrow S_{3}$ which is surjective, i.e. the covering is irregular. We call μ an S_{3}-representation of L. Further we only consider the case that the branched covering associated with μ is an orientable 3-manifold.

The author of the paper would like to express his sincere gratitude to Professor S. Kinoshita and Dr. K. Yoshikawa for their valuable advice.

2. Three-fold branched coverings of spatial $\boldsymbol{\theta}$-curves

In this section, let L denote a spatial θ-curve that consists of three egdes e_{1}, e_{2} and e_{3}, each of which has distinct endpoints A and B. Suppose that each of e_{1}, e_{2} and e_{3} is oriented from A to B. Then $G=\pi_{1}\left(S^{3}-L\right)$ is generated by $x_{1}, \cdots, x_{l} ; y_{1}, \cdots, y_{m} ; z_{1}, \cdots, z_{n}$, where each of x_{i}, y_{j} and z_{k} corresponds to a meridian of each of e_{1}, e_{2} and e_{3}, respectively. Note that every element of S_{3} can be expressed as $a^{\delta} b^{2}$, where $a=(01), b=(012) ; \delta=0,1, \varepsilon=0,1,2$. We assume that

