HYPOELLIPTICITY FOR SEMI-ELLIPTIC OPERATORS WHICH DEGENERATE ON HYPERSURFACE

TATSUSHI MORIOKA

(Received August 9, 1990)

1. Introduction and results

Let us denote a coordinate of $T^*(\mathbf{R}^n)$ by the following notation:

$$T^*(\mathbf{R}^n) = \{(x, y; \xi, \eta) : x, \xi \in \mathbf{R}^{n_1} \text{ and } y, \eta \in \mathbf{R}^{n_2}\}$$
.

Here $n=n_1+n_2$. In this paper, we shall study the hypoellipticity of semielliptic operators in \mathbb{R}^n which degenerate at x=0. It is well known that nondegenerate semi-elliptic operators are hypoelliptic. For the definition of semielliptic operators, see Kumano-go [5, p.85]. We consider a differential operator of the form

(1.1)
$$L = a(x, y, D_x) + g(x) b(x, y, D_y) \text{ in } \mathbf{R}^n = \mathbf{R}_x^{n_1} \times \mathbf{R}_y^{n_2},$$

satisfying the following conditions. (Throughout this paper, the coefficients of differential operators are assumed to be functions of the class C^{∞} .)

- (A.1) g(0) = 0 and g(x) > 0 for $x \neq 0$.
- (A.2) $a(x, y, D_x)$ is a differential operator of order 2*l* and

Re
$$a(x, y, \xi) \ge C_1 |\xi|^{2l}$$

holds for sufficiently large $|\xi|$.

(A.3) $b(x, y, D_y)$ is a differential operator of order 2m and

Re
$$b(x, y, \eta) \ge C_2 |\eta|^{2m}$$

holds for sufficiently large $|\eta|$. Here C_1 and C_2 are positive constants and l, m are positive integers.

Our main result is the following:

Theorem 1. Let L be an operator of the form (1.1) satisfying (A.1)–(A.3). Then L is hypoelliptic, i.e.,

$$\operatorname{sing supp} Lu = \operatorname{sing supp} u \quad \text{for} \quad u \in \mathcal{D}'.$$

Taniguchi [12] showed that L is hypoelliptic if g(x) is non-negative and