Fujita, Y. Osaka J. Math. 27 (1990), 797-804

INTEGRODIFFERENTIAL EQUATION WHICH INTERPOLATES THE HEAT EQUATION AND THE WAVE EQUATION (II)

YASUHIRO FUJITA

(Received November 27, 1989)

1. Introduction

In the present paper we are concerned with the integrodifferential equation

(IDE)_a
$$u(t, x) = \phi(x) + \frac{t^{\alpha/2}}{\Gamma\left(1 + \frac{\alpha}{2}\right)} \psi(x) + \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} \Delta u(s, x) ds$$
$$t>0, x \in \mathbf{R}$$

for $1 \le \alpha \le 2$. Here $\Gamma(x)$ is the gamma function and $\Delta = (\partial/\partial x)^2$. When $\psi \equiv 0$, (IDE)₁ is reduced to the heat equation. For $\alpha = 2$, (IDE)₂ is just the wave equation and its solution $u_2(t, x)$ has the expression called the d'Alembert's formula:

$$u_2(t, x) = \frac{1}{2} \left[\phi(x+t) + \phi(x-t) \right] + \frac{1}{2} \int_{x-t}^{x+t} \psi(y) \, dy \, .$$

The present paper is the continuation of [6]; the aim of the present paper, which is different from that of [6], is to investigate the structure of the solution of (IDE)_{α} by its decomposition for every α , $1 \le \alpha \le 2$.

In Theorem B below, we shall show that $(IDE)_{\alpha}$ has the unique solution $u_{\alpha}(t, x)$ $(1 \le \alpha \le 2)$ expressed as

(1)
$$u_{\boldsymbol{\alpha}}(t,x) = \frac{1}{2} \boldsymbol{E}[\phi(x+Y_{\boldsymbol{\alpha}}(t)) + \phi(x-Y_{\boldsymbol{\alpha}}(t))] + \frac{1}{2} \boldsymbol{E} \int_{x-Y_{\boldsymbol{\alpha}}(t)}^{x+Y_{\boldsymbol{\alpha}}(t)} \psi(y) \, dy$$

where $Y_{\alpha}(i)$ is continuous, nondecreasing and nonnegative stochastic process with Mittag-Leffler distributions of order $\alpha/2$, and **E** stands for the expectation. We remark that the expression (1) has the same form as that of the d'Alembert's formula.

In Theorem A below, we shall consider the decomposition of $u_{\alpha}(t, x)$ $(1 \le \alpha \le 2)$. We decompose u_{α} into two functions u_{α}^+ and u_{α}^- defined by

(2)
$$u_{\boldsymbol{\alpha}}^{+}(t,x) = \frac{1}{2} \boldsymbol{E} \left[\phi(x - Y_{\boldsymbol{\alpha}}(t)) - \Psi(x - Y_{\boldsymbol{\alpha}}(t)) \right]$$