Ito, H. Osaka J. Math. 27 (1990), 667-707

ON A MIXED PROBLEM OF LINEAR ELASTODYNAMICS WITH A TIME-DEPENDENT DISCONTINUOUS BOUNDARY CONDITION

HIROYA ITO

(Received August 5, 1988) (Revised February 6, 1989)

1. Introduction

1.1. Problem and Main Result. Let Ω be a bounded domain in \mathbb{R}^n , $n \geq 2$, with C^{∞} -boundary $\Gamma = \partial \Omega$. We consider the following mixed problem of linear elastodynamics:

Problem (D). Find a vector function $\mathbf{u} = (u^i(t, x))_{1 \le i \le n}$ satisfying

(D.1)
$$\left(\frac{\partial^2}{\partial t^2} + A(t)\right) \boldsymbol{u} = \boldsymbol{f}$$
 in $\hat{\Omega}_T := (0, T) \times \Omega$, $0 < T < \infty$,

(D.2)
$$\boldsymbol{u}(0, \cdot) = \boldsymbol{u}_0, \quad \frac{\partial \boldsymbol{u}}{\partial t}(0, \cdot) = \boldsymbol{u}_1 \quad in \quad \Omega$$

with a time-dependent mixed boundary condition

(D.3)
$$\begin{cases} \boldsymbol{u} = \boldsymbol{0} & on \quad \hat{\Gamma}_{D,T} := \bigcup_{t \in [0,T]} \{t\} \times \Gamma_D(t), \\ B(t)\boldsymbol{u} = \boldsymbol{0} & on \quad \hat{\Gamma}_{N,T} := \bigcup_{t \in [0,T]} \{t\} \times \Gamma_N(t) \end{cases}$$

for given $u_0 = (u_0^i(x))_{1 \le i \le n}$, $u_1 = (u_1^i(x))_{1 \le i \le n}$ and $f = (f^i(t, x))_{1 \le i \le n}$.

Here A(t) and B(t) are differential systems operating on $v = (v^i(x))_{1 \le i \le n}$ for each $t \in [0, T]$ defined by

(1.1)
$$(A(t)v)^i = -\frac{\partial}{\partial x^j} \left(a^{ijkh}(t, x) \frac{\partial v^k}{\partial x^h} \right)$$
 in Ω ,

(1.2)
$$(B(t)v)^i = \nu_j(\dot{x})a^{ijkh}(t, \dot{x})\frac{\partial v^k}{\partial x^h}$$
 on Γ for $1 \leq i \leq n$

where $a^{ijkh}(t, x)$ are real-valued C^{∞} -functions on $\overline{\hat{\Omega}}_T$ with symmetry relations

(1.3)
$$a^{ijkh}(t, x) = a^{khij}(t, x)$$
 for $1 \le i, j, k, h \le n$,

and $\boldsymbol{\nu}(\boldsymbol{\dot{x}}) = (\nu_j(\boldsymbol{\dot{x}}))_{1 \leq j \leq n}$ denotes the unit outer normal to Γ at $\boldsymbol{\dot{x}} \in \Gamma$. (Super- and