CHARACTERIZATIONS OF CONDITIONAL EXPECTATION OPERATORS FOR $L_{p}-V A L U E D ~ F U N C T I O N S$ ON A GENERAL MEASURE SPACE

Ryohei MIYADERA

(Received July 24, 1989)

Introduction. Let $(\Omega, \boldsymbol{A}, \mu)$ be a measure space, where \boldsymbol{A} is a σ-ring and μ is a σ-finite measure on $\boldsymbol{A},(X, S, \lambda)$ a measure space and E a real Banach space. We consider semi-constant-preserving contractive projections of $L_{1}(\Omega, \boldsymbol{A}, \mu, E)$ into itself. If $(\Omega, \boldsymbol{A}, \mu)$ is a probability space and E is a strictlyconvex Banach space, then Landers and Rogge [2] proved that such operators coincide precisely with the conditional expectation operators. If $(\Omega, \boldsymbol{A}, \mu)$ is a probability space and $E=L_{p}(X, S, \lambda)$, where $p=1$ or ∞, then Miyadera [3] and [4] proved that such operators coincide precisely with the conditional expectation operators under some additional conditions. In this paper we deal with the case when $(\Omega, \boldsymbol{A}, \mu)$ is a general measure space, where \boldsymbol{A} is a σ-ring and λ is a σ-finite measure on \boldsymbol{A}. Substituting constant-preserving property by semi-constant-preserving property we can prove theorems which are generalizations of characterization theorems in Landers and Rogge [2], Miyadera [3] and [4].

1. Definitions and useful Lemmas. Let (Ω, A, μ) be a measure space, $\boldsymbol{A}(\mu)=\{A \in \boldsymbol{A} ; \mu(A)<\infty\}$ and $E a$ real Banach space with the norm \|||. Note that E can be the class R of real numbers. Let \boldsymbol{N} be the class of natural numbers. For any $A, B \in A$ we write $A \subset B$ if $\mu(A-B)=0$ aud $A=B$ if $\mu((A-B) \cup(B-A))=0 . \quad A, B \in \boldsymbol{A}$ are said to be disjoint if $\mu(A \cap B)=0$. We suppose that μ is σ-finite, i.e., for any $A \in \boldsymbol{A}$ there exists a sequence of sets $\left\{A_{n} ; n \in \boldsymbol{N}\right\}$ such that $A_{n} \in \boldsymbol{A}(\mu)$ and $A=\cup\left\{A_{n} ; n \in \boldsymbol{N}\right\}$. For any $A \in \boldsymbol{A}$ we denote by I_{A} the indicator function of A and by $A=\emptyset$ we mean $\mu(A)=0$. Let $L_{1}(\Omega, A, \mu, E)$ be the calss of E-valued Bochner integrable functions, which is a Banach space with the norm $\left\|\|_{L}\right.$ defined by

$$
\|f\|_{L}=\int\|f(\omega)\| d \mu \quad \text { for any } \quad f \in L_{1}(\Omega, \boldsymbol{A}, \mu, E)
$$

For any $f \in L_{1}(\Omega, \boldsymbol{A}, \mu, E)$ we denote $\{\omega ; f(\omega) \neq 0\}$ by $s(f)$ and for any linear operator Q of $L_{1}(\Omega, \boldsymbol{A}, \mu, E)$ into itself we denote $S(Q)=\{A \in \boldsymbol{A}(\mu)$; there

