CHARACTERIZATIONS OF CONDITIONAL EXPEC-TATION OPERATORS FOR L_p -VALUED FUNCTIONS ON A GENERAL MEASURE SPACE

RYOHEI MIYADERA

(Received July 24, 1989)

Introduction. Let (Ω, A, μ) be a measure space, where A is a σ -ring and μ is a σ -finite measure on A, (X, S, λ) a measure space and E a real Banach space. We consider semi-constant-preserving contractive projections of $L_1(\Omega, A, \mu, E)$ into itself. If (Ω, A, μ) is a probability space and E is a strictlyconvex Banach space, then Landers and Rogge [2] proved that such operators coincide precisely with the conditional expectation operators. If (Ω, A, μ) is a probability space and $E=L_p(X, S, \lambda)$, where p=1 or ∞ , then Miyadera [3] and [4] proved that such operators coincide precisely with the conditional expectation operators under some additional conditions. In this paper we deal with the case when (Ω, A, μ) is a general measure space, where A is a σ -ring and λ is a σ -finite measure on A. Substituting constant-preserving property by semi-constant-preserving property we can prove theorems which are generalizations of characterization theorems in Landers and Rogge [2], Miyadera [3] and [4].

1. Definitions and useful Lemmas. Let (Ω, A, μ) be a measure space, $A(\mu) = \{A \in A; \mu(A) < \infty\}$ and E a real Banach space with the norm || ||. Note that E can be the class R of real numbers. Let N be the class of natural numbers. For any $A, B \in A$ we write $A \subset B$ if $\mu(A-B) = 0$ and A = B if $\mu((A-B) \cup (B-A)) = 0$. $A, B \in A$ are said to be disjoint if $\mu(A \cap B) = 0$. We suppose that μ is σ -finite, i.e., for any $A \in A$ there exists a sequence of sets $\{A_n; n \in N\}$ such that $A_n \in A(\mu)$ and $A = \cup \{A_n; n \in N\}$. For any $A \in A$ we denote by I_A the indicator function of A and by $A = \emptyset$ we mean $\mu(A) = 0$. Let $L_1(\Omega, A, \mu, E)$ be the calss of E-valued Bochner integrable functions, which is a Banach space with the norm $|| ||_L$ defined by

$$||f||_L = \int ||f(\omega)|| d\mu$$
 for any $f \in L_1(\Omega, A, \mu, E)$.

For any $f \in L_1(\Omega, A, \mu, E)$ we denote $\{\omega; f(\omega) \neq 0\}$ by s(f) and for any linear operator Q of $L_1(\Omega, A, \mu, E)$ into itself we denote $S(Q) = \{A \in A(\mu); \text{ there} \}$