A FLUCTUATION THEOREM ASSOCIATED WITH CAUCHY PROBLEMS FOR STATIONARY RANDOM OPERATORS

TAKEHIKO MORITA

(Received June 11, 1986)

1. Introduction

Let $\{H^p; p \in \mathbb{R}\}$ be a family of separable real Hilbert spaces which are modeled on the Sobolev spaces on a compact manifold without boundary. Consider a stationary process $L(\omega, t)$ on a probability space (Ω, \mathcal{F}, P) with values in a certain class of linear operators on $H^{-\infty} = \bigcup_{p} H^p$, which are modeled on pseudo-differential operators. Denote by L the mean operator of $L(\omega, t)$. We assume that the following abstract Cauchy problems are 'well-posed':

(1.1)
$$\begin{cases} \frac{du(t)}{dt} = L\left(\omega, \frac{t}{\varepsilon}\right)u(t)\\ u(0) = u_0 \in H^p, \end{cases}$$

and

(1.2)
$$\begin{cases} \frac{du(t)}{dt} = Lu(t) \\ u(0) = u_0 \in H^p \end{cases}$$

The aim of this paper is to investigate the fluctuation of $u^{\mathfrak{e}}(\omega, t)$ around $u^{\mathfrak{0}}(t)$ where $u^{\mathfrak{e}}(\omega, t)$ and $u^{\mathfrak{0}}(t)$ are the solutions of (1.1) and (1.2) respectively. Precisely, let $C([0, T] \rightarrow H^q)$ be the space of all continuous functions on [0, T] with values in H^q , for $q \in \mathbb{R}$. Under the assumption (A.I), (A.II), and (A.III) in Section 2, we show that for any T>0, the stochastic process $X^{\mathfrak{e}}(\omega, t) = \frac{u^{\mathfrak{e}}(\omega, t) - u^{\mathfrak{0}}(t)}{\sqrt{\varepsilon}}$ converges weakly to a Gaussian process $X^{\mathfrak{0}}(\omega, t)$ in the sense of distribution on $C([0, T] \rightarrow H^q)$ for any $q \leq p - \alpha$, where α is determined by the assumptions.

A mathematical motivation of this paper was taken from Khas'minskii's work [8]. We summarize his work here. Let $F(\omega, t, x)$ be a strongly mixing process which is a twice differentiable vector field on \mathbf{R}^d for each ω and t. Let F(x) be the vector field defined as the mean of the process $F(\omega, t, x)$ in some sense. He considered the following Cauchy problems