Yamamura, K. Osaka J. Math. 23 (1986), 471–478

ON UNRAMIFIED GALOIS EXTENSIONS OF REAL QUADRATIC NUMBER FIELDS

KEN YAMAMURA

(Received February 26, 1985)

1. Introduction

The purpose of this note is to construct infinitely many real quadratic number fields each having an A_5 -extension which is unramified at all primes including the infinite primes (abbrev. strictly unramified). Here, a G-extension means a Galois extension having G as its Galois group, and S_n (resp. A_n) denotes the symmetric group (resp. the alternating group) of degree n. In [12], Yamamoto constructed infinitely many real quadratic number fields each having an A_n -extension which is unramified at all finite primes (abbrev. weakly unramified) for each $n \ge 4$, but they are always ramified at the two infinite primes. In this note, we shall prove the following

Theorem. Let S_1 and S_2 be given finite sets of prime numbers satisfying $S_1 \cap S_2 = \emptyset$ and $2,5 \notin S_2$. Then there exist infinitely many real quadratic number fields F satisfying the following conditions:

- (a) F has a strictly unramified A_5 -extension.
- (b) All primes in S_1 are unramified in F.
- (c) All primes in S_2 are ramified in F.

Composing such an A_5 -extension with some real quadratic number field, we obtain infinitely many real quadratic number fields with a strictly unramified S_5 -extension. Furthermore, we describe a method for constructing infinitely many real quadratic number fields having a strictly unramified A_n -extension for larger n, and give some examples of real quadratic number fields with class number one having a strictly or weakly unramified A_n -extension, for n=5, 6, and 7.

This note is based on a part of the author's Master's thesis [13].

2. Proof of the theorem

Take a polynomial of the form

$$f(x) = x^{5} - 2m^{2} x^{3} + (6m^{2} - 1) x - (m - 4).$$

(*m*: a positive integer)