ASYMPTOTIC BEHAVIOR AT INFINITY OF THE GREEN FUNCTION OF A CLASS OF SYSTEMS INCLUDING WAVE PROPAGATION IN CRYSTALS

Koji KIKUCHI

(Received July 31, 1984)

0. Introduction

Many phenomena of wave propagation problems for example acoustic, electromagnetic and elastic waves, can be written in first order symmetric hyperbolic system. According to C.H. Wilcox [10] they can be represented in general as

(0.1)
$$E(x)D_{i}u - \sum_{j=1}^{n} A_{j}D_{j}u = f(t, x).$$

where $t \in \mathbf{R}^1$ (time), $x \in \mathbf{R}^n$ (space), $D_i = \frac{1}{i} \frac{\partial}{\partial t}$ and $D_j = \frac{1}{i} \frac{\partial}{\partial x_j}$. Here $u = (u_1 + v_2)$

 $(t, x), \dots, u_m(t, x)$ is a \mathbb{C}^m -valued function which describes the state of the media at position x and time t, E(x) is a positive definite hermitian matrix valued function of x, A_j 's are $m \times m$ constant hermitian matrices and $f(t, x) = (f_1(t, x), \dots, f_m(t, x))$ is a prescribed function which specifies the sources acting in the medium. If we write

$$\Delta = E(x)^{-1}\sum_{j=1}^n A_j(x)D_j$$
,

(0.1) can be written as

$$(0.1)' D_t u - \Lambda u = f(t, x).$$

When E(x) = I (identity matrix) the equation (0.1)' is represented as

$$(0.2) D_t u - \Lambda^0 u = f(t, x),$$

where

$$\Lambda^0 = \sum_{j=1}^n A_j D_j$$

Now if we assume that f has the form

$$-f(t, x) = e^{i\lambda t} f(x) \qquad \lambda \in \mathbf{R}^1 \setminus \{0\}$$

and that the solution of (0.1)' has the same form