Yosimura, Z. Osaka J. Math. 21 (1984), 817-829

HOMOLOGY LOCALIZATIONS AFTER APPLYING SOME RIGHT ADJOINT FUNCTORS

Dedicated to Professor Nobuo Shimada on his sixtieth birthday

ZEN-ICHI YOSIMURA

(Received January 17, 1984)

0. Introduction

Each homology theory E_* determines a natural E_* -localization $\eta: X \to L_E X$ in the homotopy category hCW of CW-complexes or hCWS of CW-spectra. It is full of interest to study the behavior of E_* -localizations after application of various functors T to the category hCW or hCWS. Consider as T the 0-th space functor $\Omega^{\infty}: hCWS \to hCW$ which is right adjoint to the suspension spectrum functor Σ^{∞} . Bousfield [4] showed that the E_* -localization of an infinite loop space $\Omega^{\infty}X$ is still an infinite loop space. More precisely, he proved

Theorem 0.1 ([4, Theorem 1.1]). There exists an idempotent monad L: $hCWS_0 \rightarrow hCWS_0$ and $\eta: 1 \rightarrow L$ such that the map $\Omega^{\infty}\eta: \Omega^{\infty}X \rightarrow \Omega^{\infty}LX$ is an E_* -localization in hCW. Here $hCWS_0$ denotes the full subcategory of hCWS consisting of (-1)-connected CW-spectra.

As remarked by Bousfield [4], this implies

Proposition 0.2. If $f: A \rightarrow B$ is an E_* -equivalence in hCW, then so is $\Omega^{\infty} \Sigma^{\infty} f: \Omega^{\infty} \Sigma^{\infty} A \rightarrow \Omega^{\infty} \Sigma^{\infty} B$.

On the other hand, Kuhn [7, Proposition 2.4] gave recently a simple proof of Proposition 0.2 using the stable decompositions of $\Omega^{\infty}\Sigma^{\infty}A$ and $\Omega^{\infty}\Sigma^{\infty}B$ (see [9]).

In this note we will show that Proposition 0.2 is essential to the existence theorem 0.1. Thus, by use of only Proposition 0.2 we give a direct proof of the existence theorem 0.1 along the primary line of Bousfield [1, 2 and 3]. In our proof we don't need the knowledge of very special Γ -spaces although Bousfield did in [4].

Let $T: \mathcal{C} \to \mathcal{B}$ be a functor with a left adjoint S and \mathcal{W} be a morphism class in \mathcal{B} . In §1 we introduce $T^*\mathcal{W}$ - and (\mathcal{W}, T) -localizations in \mathcal{C} and discuss a relation between them. Following our notation Theorem 0.1 says that there exists an (E_*, Ω^{∞}) -localization in $h\mathcal{CWS}_0$ where E_* stands for the morphism class of E_* -equivalences in $h\mathcal{CW}$. Don't confuse our notation with Bousfield's [4]. We next give three conditions (C.1)-(C.3) under which we can construct