HOMOLOGY LOCALIZATIONS AFTER APPLYING SOME RIGHT ADJOINT FUNCTORS

Dedicated to Professor Nobuo Shimada on his sixtieth birthday

Zen-ichi YOSIMURA

(Received January 17, 1984)

0. Introduction

Each homology theory E_{*} determines a natural E_{*}-localization $\eta: X \rightarrow L_{E} X$ in the homotopy category $h \mathcal{C W}$ of $C W$-complexes or $h \mathcal{C W S}$ of $C W$-spectra. It is full of interest to study the behavior of E_{*}-localizations after application of various functors T to the category $h \mathcal{C W}$ or $h \mathcal{C W} S$. Consider as T the 0 -th space functor $\Omega^{\infty}: h \mathcal{W} \mathcal{S} \rightarrow h \mathcal{C W}$ which is right adjoint to the suspension spectrum functor Σ^{∞}. Bousfield [4] showed that the E_{*}-localization of an infinite loop space $\Omega^{\infty} X$ is still an infinite loop space. More precisely, he proved

Theorem 0.1 ([4, Theorem 1.1]). There exists an idempotent monad L: $h C W S_{0} \rightarrow h \mathcal{C N} \mathcal{S}_{0}$ and $\eta: 1 \rightarrow L$ such that the map $\Omega^{\infty} \eta: \Omega^{\infty} X \rightarrow \Omega^{\infty} L X$ is an $E_{*}-$ localization in $h \mathcal{C W W}$. Here $h \mathcal{C W} S_{0}$ denotes the full subcategory of $h C W N S$ consisting of (-1)-connected $C W$-spectra.

As remarked by Bousfield [4], this implies
Proposition 0.2. If $f: A \rightarrow B$ is an E_{*}-equivalence in $h \mathcal{C W}$, then so is $\Omega^{\infty} \Sigma^{\infty} f: \Omega^{\infty} \Sigma^{\infty} A \rightarrow \Omega^{\infty} \Sigma^{\infty} B$.

On the other hand, Kuhn [7, Proposition 2.4] gave recently a simple proof of Proposition 0.2 using the stable decompositions of $\Omega^{\infty} \Sigma^{\infty} A$ and $\Omega^{\infty} \Sigma^{\infty} B$ (see [9]).

In this note we will show that Proposition 0.2 is essential to the existence theorem 0.1. Thus, by use of only Proposition 0.2 we give a direct proof of the existence theorem 0.1 along the primary line of Bousfield [1, 2 and 3]. In our proof we don't need the knowledge of very special Γ-spaces although Bousfield did in [4].

Let $T: \mathcal{C} \rightarrow \mathscr{B}$ be a functor with a left adjoint S and \mathscr{W} be a morphism class in \mathscr{B}. In $\S 1$ we introduce $T^{*} \mathscr{W}$ - and (\mathscr{W}, T)-localizations in \mathcal{C} and discuss a relation between them. Following our notation Theorem 0.1 says that there exists an $\left(E_{*}, \Omega^{\infty}\right)$-localization in $h C \mathscr{N} S_{0}$ where E_{*} stands for the morphism class of E_{*}-equivalences in $h \mathcal{C W}$. Don't confuse our notation with Bousfield's [4]. We next give three conditions (C.1)-(C.3) under which we can construct

