Bally, V. Osaka J. Math. 21 (1984), 91-111

AN APPROXIMATION THEOREM FOR MARKOV PROCESSES

VLAD BALLY

(Received April 5, 1982)

1. Introduction

In [1], Watanabe proved that for every Markov process X, under some conditions, there exists a sequence of regular step processes (R.S.P.) X^n such that the resolvents of X^n converge weakly to the resolvent of X. Under some supplementary conditions we shall prove that the distributions of X^n converge to the distribution of X. An intuitive description of X^n is as follows: X and X^n start from the same state x_0 (we mean that X_0 and X_0^n have the same distribution). If X remains closed to x_0 for a time T_n (that is, $d(x_0, X_t) < \frac{1}{n}$ for all $t < T_n$ and $X_{T_n} = x_1$, with $d(x_0, x_1) \ge \frac{1}{n}$), then $X_t^n = x_0$ for all $t < D_n$, with D_n an exponentially distributed holding time with same mean value as T_n (T_n is generally not exponentially distributed). Then X^n jumps in x_1 (we mean that X_{T_n} and $X_{D_n}^n$ have the same distribution), and so on.

The rigorous construction of X^n and Watanabe's result are presented in the beginning of the paper. The theorem following this construction is the main result of the paper.

2. Main results

Let *E* be a locally compact with countable base space (L.C.C.B.), \mathcal{V} an open base and *d* any metric of *E*. For each *n* we can choose the system U_i^n , $i \in N$ and V_i^n , $i \in N$ of sets in \mathcal{V} satisfying the following conditions:

- (1) Each \overline{U}_i^n is compact and $d(U_i^n) < \frac{1}{n} (d(A) = \sup (d(x, y); x, y \in A));$
- (2) $V_i^n \subseteq U_i^n$;
- $(3) \quad \cup V_i^n = E ;$
- (4) For every compact set K only a finite number of V_i^n intersect with K.

Let $(\Omega, \mathcal{F}, \mathcal{F}_t, X_t, \theta_t, P^x)$ be a standard process with state space E and $(U_a)_{a>0}$ be the resolvent of X. We now define σ_k^n by