Hiramine, Y. Osaka J. Math. 20 (1983), 645-658

ON SEMI-FIELD PLANES OF EVEN ORDER

YUTAKA HIRAMINE

(Received June 30, 1981)

1. Introduction

Let π be a non-Desarguesian semi-field plane with an autotopism group G and let $u(\pi)$ denote the number of the orbits of G on the points not incident with any side of the autotopism triangles.

In their paper [9], M.J. Kallaher and R.A. Liebler have conjectured that $u(\pi) \ge 5$ and they have proved that the conjecture is true if G is solvable and the order of π is not 2^6 .

In this paper we treat semi-field planes of even order whose autotopism groups are not necessarily solvable and prove the following.

Theorem 1. Let π be a non-Desarguesian semi-field plane of order 2^r. If r is not divisible by 4, then $u(\pi) \ge 5$.

The proof requires the use of the Kallaher-Liebler's theorem mentioned above and the following lemma which we prove in section 3.

Lemma 2. Let π be a non-Desarguesian semi-field plane of order 2^6 with a solvable autotopism group. Then $u(\pi) \ge 5$.

2. Notations and preliminaries

Our notation is largely standard and taken from [3] and [6]. Let G be a permutation group on Ω . For $X \leq G$ and $\Delta \subset \Omega$, we define $F(X) = \{\alpha \in \Omega \mid \alpha^* = \alpha \text{ for all } x \in X\}$, $X(\Delta) = \{x \in X \mid \Delta^* = \Delta\}$, $X_{\Delta} = \{x \in X \mid \alpha^* = \alpha \text{ for all } \alpha \in \Delta\}$ and $X^{\Delta} = X(\Delta)/X_{\Delta}$, the restriction of X on Δ . When X is a collineation group of a projective plane, we denote by F(X) the set of fixed points and fixed lines of X.

Lemma 2.1. Let G be a transitive permutation group on a finite set Ω , H a stabilizer of a point of Ω and M a nonempty subset of G. Then $|F(M)| = |N_G(M)| \times |ccl_G(M) \cap H|/|H|$. Here $ccl_G(M) \cap H = \{g^{-1}Mg|g^{-1}Mg \subset H, g \in G\}$.

Proof. Set $W = \{(L, \alpha) | L \in ccl_G(M), \alpha \in F(L)\}$ and $W_{\alpha} = \{L | L \in ccl_G(M), \alpha \in F(L)\}$