UNIPOTENT CHARACTERS OF SO_{2n}^{\pm} , Sp_{2n} AND SO_{2n+1} OVER F_q WITH SMALL q

Teruaki ASAI

(Received April 30, 1981)

0. Introduction. Let G be a special orthogonal group or symplectic group over a finite field \mathbf{F}_q , F the Frobenius mapping and G^F the group of all F-stable points of G. G. Lusztig [7], [8] has obtained explicit formulas for the characters of the unipotent representations of G^F on any regular semisimple element of G^F provided that the order q of the defining field \mathbf{F}_q is sufficiently large. Our purpose in this paper is to show that his formulas are valid for any q.

Let W be the Weyl group of G and m an odd positive integer. For $w \in W$, let $R_w^{(m)}$ be the Deligne-Lusztig virtual representation [2], [6, 3.4] of G^{F^m} . By [2, 7.9], to determine the values of the character of a unipotent representation ρ of G^{F^m} on regular semisimple elements, it suffices to determine the inner product

 $\langle R_w^{(m)}, \rho
angle$

for any $w \in W$. This has been done by G. Lusztig [7], [8] for a sufficiently large q^m . Let *n* be the rank of G and Ψ_n be the set of symbol classes (cf. [5, § 3]) that parameterizes the unipotent representations (up to equivalence) of G^F or G^{F^m} , i.e.

$$\Psi_n = \begin{cases} \Phi_n & \text{if } G = SO_{2n+1} \text{ or } Sp_{2n} \\ \Phi_n^{\pm} & \text{if } G = SO_{2n}^{\pm} \end{cases}$$

in the notations in [5, § 3]. For $\Lambda \in \Psi_n$, let $\rho_{\Lambda}^{(1)}$ and $\rho_{\Lambda}^{(m)}$ be the corresponding unipotent representations of G^F and G^{F^m} respectively. Our main result (Theorem 4.2, (iii)) is

(*)
$$\langle R_w^{(m)}, \rho_\Lambda^{(m)} \rangle = \langle R_w^{(1)}, \rho_\Lambda^{(1)} \rangle$$

for any $\Lambda \in \Psi_n$ and $w \in W$ if *m* is any sufficiently large positive integer prime to 2p with *p* the characteristic of F_q . Hence the required character formula is obtained for any *q*.

Our proof goes as follows. Firstly, we write the Frobenius mapping F